从演示中学习符合要求的装配动作

Markku Suomalainen, V. Kyrki
{"title":"从演示中学习符合要求的装配动作","authors":"Markku Suomalainen, V. Kyrki","doi":"10.1109/IROS.2016.7759153","DOIUrl":null,"url":null,"abstract":"Automating assembly processes outside controlled factory environments is still rare, mostly because of the inherent position uncertainties. The use of compliant motions allows robustness against the uncertainty, but automatic planning of compliant motion sequences is not computationally feasible. In this paper, we show how compliant assembly motions can be learned from human demonstrations. A human teacher will kinesthetically demonstrate compliant motions where the physical shapes of assembled parts guide the motion. From these demonstrations, the proposed method identifies desired direction of movement, the number of compliant axes and their directions. We use this information to construct an impedance controller which can reproduce the assembly motion despite uncertainty in the starting position. The method is studied with a KUKA LWR4+ arm in two test setups with different number of physically constrained degrees of freedom. The experimental study shows that the method is able to correctly identify the motion parameters and allows the robot to successfully perform the demonstrated assembly motion from various unseen starting positions.","PeriodicalId":296337,"journal":{"name":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Learning compliant assembly motions from demonstration\",\"authors\":\"Markku Suomalainen, V. Kyrki\",\"doi\":\"10.1109/IROS.2016.7759153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automating assembly processes outside controlled factory environments is still rare, mostly because of the inherent position uncertainties. The use of compliant motions allows robustness against the uncertainty, but automatic planning of compliant motion sequences is not computationally feasible. In this paper, we show how compliant assembly motions can be learned from human demonstrations. A human teacher will kinesthetically demonstrate compliant motions where the physical shapes of assembled parts guide the motion. From these demonstrations, the proposed method identifies desired direction of movement, the number of compliant axes and their directions. We use this information to construct an impedance controller which can reproduce the assembly motion despite uncertainty in the starting position. The method is studied with a KUKA LWR4+ arm in two test setups with different number of physically constrained degrees of freedom. The experimental study shows that the method is able to correctly identify the motion parameters and allows the robot to successfully perform the demonstrated assembly motion from various unseen starting positions.\",\"PeriodicalId\":296337,\"journal\":{\"name\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2016.7759153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2016.7759153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

在受控工厂环境之外,自动化装配过程仍然很少,主要是因为固有的位置不确定性。柔顺运动的使用允许对不确定性的鲁棒性,但柔顺运动序列的自动规划在计算上是不可行的。在本文中,我们展示了如何从人类演示中学习顺从的装配运动。一个真人老师将在动作上演示兼容的运动,其中组装部件的物理形状指导运动。从这些演示中,提出的方法确定了所需的运动方向,柔性轴的数量及其方向。我们利用这些信息构造了一个阻抗控制器,该控制器可以在初始位置不确定的情况下再现装配运动。用KUKA LWR4+臂在两个不同物理约束自由度的试验装置中对该方法进行了研究。实验研究表明,该方法能够正确识别运动参数,使机器人能够从各种未知的起始位置成功地完成演示的装配运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning compliant assembly motions from demonstration
Automating assembly processes outside controlled factory environments is still rare, mostly because of the inherent position uncertainties. The use of compliant motions allows robustness against the uncertainty, but automatic planning of compliant motion sequences is not computationally feasible. In this paper, we show how compliant assembly motions can be learned from human demonstrations. A human teacher will kinesthetically demonstrate compliant motions where the physical shapes of assembled parts guide the motion. From these demonstrations, the proposed method identifies desired direction of movement, the number of compliant axes and their directions. We use this information to construct an impedance controller which can reproduce the assembly motion despite uncertainty in the starting position. The method is studied with a KUKA LWR4+ arm in two test setups with different number of physically constrained degrees of freedom. The experimental study shows that the method is able to correctly identify the motion parameters and allows the robot to successfully perform the demonstrated assembly motion from various unseen starting positions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信