基于特征图像的人脸识别主成分分析的数值方法

I. Aravind, C. Chandra, M. Guruprasad, P. Sarathi Dev, R. Samuel
{"title":"基于特征图像的人脸识别主成分分析的数值方法","authors":"I. Aravind, C. Chandra, M. Guruprasad, P. Sarathi Dev, R. Samuel","doi":"10.1109/ICIT.2002.1189900","DOIUrl":null,"url":null,"abstract":"This paper presents a novel and feasible method of implementing the face recognition technique based on eigenfaces. The method is intuitive, simple to express in mathematical terms, and flexible. We create a database of images and train these faces using the eigenface method to recognize a given face in the database. Another case, where the input image is non-facial is identified using our reconstruction algorithm developed. We applied preprocessing algorithms like the smoothing transformation mean filtering, back ground elimination and local enhancement filter to bring the images in the database and probe image into a standard, recognizable format. Based on its ability to distinguish between different faces, the system showed a maximum recognition rate close to 90%. The relationship between recognition accuracy, scale and rotation was also investigated.","PeriodicalId":344984,"journal":{"name":"2002 IEEE International Conference on Industrial Technology, 2002. IEEE ICIT '02.","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Numerical approaches in principal component analysis for face recognition using eigenimages\",\"authors\":\"I. Aravind, C. Chandra, M. Guruprasad, P. Sarathi Dev, R. Samuel\",\"doi\":\"10.1109/ICIT.2002.1189900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel and feasible method of implementing the face recognition technique based on eigenfaces. The method is intuitive, simple to express in mathematical terms, and flexible. We create a database of images and train these faces using the eigenface method to recognize a given face in the database. Another case, where the input image is non-facial is identified using our reconstruction algorithm developed. We applied preprocessing algorithms like the smoothing transformation mean filtering, back ground elimination and local enhancement filter to bring the images in the database and probe image into a standard, recognizable format. Based on its ability to distinguish between different faces, the system showed a maximum recognition rate close to 90%. The relationship between recognition accuracy, scale and rotation was also investigated.\",\"PeriodicalId\":344984,\"journal\":{\"name\":\"2002 IEEE International Conference on Industrial Technology, 2002. IEEE ICIT '02.\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 IEEE International Conference on Industrial Technology, 2002. IEEE ICIT '02.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2002.1189900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE International Conference on Industrial Technology, 2002. IEEE ICIT '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2002.1189900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种新颖可行的基于特征脸的人脸识别方法。该方法直观、数学表述简单、灵活。我们创建了一个图像数据库,并使用特征脸方法训练这些人脸来识别数据库中的给定人脸。另一种情况是,输入图像是非面部的,使用我们开发的重建算法进行识别。我们采用平滑变换均值滤波、背景消除和局部增强滤波等预处理算法,将数据库中的图像和探测图像转化为标准的、可识别的格式。基于对不同人脸的识别能力,该系统的识别率最高接近90%。研究了识别精度、尺度和旋转之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical approaches in principal component analysis for face recognition using eigenimages
This paper presents a novel and feasible method of implementing the face recognition technique based on eigenfaces. The method is intuitive, simple to express in mathematical terms, and flexible. We create a database of images and train these faces using the eigenface method to recognize a given face in the database. Another case, where the input image is non-facial is identified using our reconstruction algorithm developed. We applied preprocessing algorithms like the smoothing transformation mean filtering, back ground elimination and local enhancement filter to bring the images in the database and probe image into a standard, recognizable format. Based on its ability to distinguish between different faces, the system showed a maximum recognition rate close to 90%. The relationship between recognition accuracy, scale and rotation was also investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信