用卡尔曼滤波改进雷达降水估计的WRF模型输入

T. Wardah, S. Y. Sharifah Nurul Huda, R. Suzana, A. Hamzah, W. Maisarah
{"title":"用卡尔曼滤波改进雷达降水估计的WRF模型输入","authors":"T. Wardah, S. Y. Sharifah Nurul Huda, R. Suzana, A. Hamzah, W. Maisarah","doi":"10.1109/ISTMET.2014.6936527","DOIUrl":null,"url":null,"abstract":"The indirect measurement of rain through radar reflectivity is associated with various sources of errors such as ground clutter, partial beam occultation, beam blockage and attenuation effects. Removing the systematic error (bias) and enhancing the precision and limitations of radar data sources are the main focus in enhancing radar rainfall accuracy. This research work was to reduce radar rainfall bias due to the process and measurement noises using Kalman Filter with a multivariate analysis technique. The implementation of this technique involved numerical weather prediction (NWP) namely the Weather Research Forecasting (WRF) model data output parameters such as temperature and relative humidity. The study found that filtering technique using Kalman Filter with multivariate analysis applying the WRF model output has satisfactorily improve radar rainfall estimates.","PeriodicalId":364834,"journal":{"name":"2014 International Symposium on Technology Management and Emerging Technologies","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"WRF model input for improved radar rainfall estimates using Kalman Filter\",\"authors\":\"T. Wardah, S. Y. Sharifah Nurul Huda, R. Suzana, A. Hamzah, W. Maisarah\",\"doi\":\"10.1109/ISTMET.2014.6936527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The indirect measurement of rain through radar reflectivity is associated with various sources of errors such as ground clutter, partial beam occultation, beam blockage and attenuation effects. Removing the systematic error (bias) and enhancing the precision and limitations of radar data sources are the main focus in enhancing radar rainfall accuracy. This research work was to reduce radar rainfall bias due to the process and measurement noises using Kalman Filter with a multivariate analysis technique. The implementation of this technique involved numerical weather prediction (NWP) namely the Weather Research Forecasting (WRF) model data output parameters such as temperature and relative humidity. The study found that filtering technique using Kalman Filter with multivariate analysis applying the WRF model output has satisfactorily improve radar rainfall estimates.\",\"PeriodicalId\":364834,\"journal\":{\"name\":\"2014 International Symposium on Technology Management and Emerging Technologies\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Symposium on Technology Management and Emerging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISTMET.2014.6936527\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Symposium on Technology Management and Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTMET.2014.6936527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

通过雷达反射率间接测量降雨与各种误差来源有关,如地面杂波、部分波束掩星、波束阻塞和衰减效应。消除系统误差(偏差)、提高雷达数据源的精度和局限性是提高雷达降雨精度的主要重点。本文的研究工作是利用卡尔曼滤波和多变量分析技术来降低由于过程噪声和测量噪声引起的雷达降雨偏差。这项技术的实施涉及数值天气预报,即天气研究预报模式的数据输出参数,如温度和相对湿度。研究发现,基于WRF模型输出的卡尔曼滤波和多变量分析滤波技术能令人满意地改善雷达降水估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
WRF model input for improved radar rainfall estimates using Kalman Filter
The indirect measurement of rain through radar reflectivity is associated with various sources of errors such as ground clutter, partial beam occultation, beam blockage and attenuation effects. Removing the systematic error (bias) and enhancing the precision and limitations of radar data sources are the main focus in enhancing radar rainfall accuracy. This research work was to reduce radar rainfall bias due to the process and measurement noises using Kalman Filter with a multivariate analysis technique. The implementation of this technique involved numerical weather prediction (NWP) namely the Weather Research Forecasting (WRF) model data output parameters such as temperature and relative humidity. The study found that filtering technique using Kalman Filter with multivariate analysis applying the WRF model output has satisfactorily improve radar rainfall estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信