{"title":"28nm FD-SOI技术混合信号神经形态计算架构模拟电路","authors":"Ning Qiao, G. Indiveri","doi":"10.1109/S3S.2017.8309203","DOIUrl":null,"url":null,"abstract":"Developing mixed-signal analog-digital neuromorphic circuits in advanced scaled processes poses significant design challenges. We present compact and energy efficient sub-threshold analog synapse and neuron circuits, optimized for a 28 nm FD-SOI process, to implement massively parallel large-scale neuromorphic computing systems. We describe the techniques used for maximizing density with mixed-mode analog/digital synaptic weight configurations, and the methods adopted for minimizing the effect of channel leakage current, in order to implement efficient analog computation based on pA-nA small currents. We present circuit simulation results, based on a new chip that has been recently taped out, to demonstrate how the circuits can be useful for both low-frequency operation in systems that need to interact with the environment in real-time, and for high-frequency operation for fast data processing in different types of spiking neural network architectures.","PeriodicalId":333587,"journal":{"name":"2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Analog circuits for mixed-signal neuromorphic computing architectures in 28 nm FD-SOI technology\",\"authors\":\"Ning Qiao, G. Indiveri\",\"doi\":\"10.1109/S3S.2017.8309203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing mixed-signal analog-digital neuromorphic circuits in advanced scaled processes poses significant design challenges. We present compact and energy efficient sub-threshold analog synapse and neuron circuits, optimized for a 28 nm FD-SOI process, to implement massively parallel large-scale neuromorphic computing systems. We describe the techniques used for maximizing density with mixed-mode analog/digital synaptic weight configurations, and the methods adopted for minimizing the effect of channel leakage current, in order to implement efficient analog computation based on pA-nA small currents. We present circuit simulation results, based on a new chip that has been recently taped out, to demonstrate how the circuits can be useful for both low-frequency operation in systems that need to interact with the environment in real-time, and for high-frequency operation for fast data processing in different types of spiking neural network architectures.\",\"PeriodicalId\":333587,\"journal\":{\"name\":\"2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/S3S.2017.8309203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/S3S.2017.8309203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analog circuits for mixed-signal neuromorphic computing architectures in 28 nm FD-SOI technology
Developing mixed-signal analog-digital neuromorphic circuits in advanced scaled processes poses significant design challenges. We present compact and energy efficient sub-threshold analog synapse and neuron circuits, optimized for a 28 nm FD-SOI process, to implement massively parallel large-scale neuromorphic computing systems. We describe the techniques used for maximizing density with mixed-mode analog/digital synaptic weight configurations, and the methods adopted for minimizing the effect of channel leakage current, in order to implement efficient analog computation based on pA-nA small currents. We present circuit simulation results, based on a new chip that has been recently taped out, to demonstrate how the circuits can be useful for both low-frequency operation in systems that need to interact with the environment in real-time, and for high-frequency operation for fast data processing in different types of spiking neural network architectures.