推荐系统中偶然性的离线评价

D. Pastukhov, Stanislav Kuznetsov, Vojtěch Vančura, P. Kordík
{"title":"推荐系统中偶然性的离线评价","authors":"D. Pastukhov, Stanislav Kuznetsov, Vojtěch Vančura, P. Kordík","doi":"10.1109/CSIT56902.2022.10000782","DOIUrl":null,"url":null,"abstract":"Offline optimization of recommender systems is a difficult task. Popular optimization criteria such as RMSE, Recall, and NDCG do not correlate much with online performance, especially when the recommendation algorithm is largely different from the one used to generate the offline data. An exciting direction of research to mitigate this problem is to use more robust optimization criteria. Serendipity is reported to be a promising proxy. However, more variants exist, and it is unclear whether they can be used as a single criterion to optimize. This paper analyzes how serendipity relates to other optimization criteria for three different recommendation algorithms. Based on our findings, we propose to modify the way serendipity is computed. We conduct experiments using three collaborative filtering algorithms: K-Nearest Neighbors, Matrix Factorization, and Embarrassingly Shallow Autoencoder $(EASE^{R})$. We also employ and evaluate the ensemble learning approach and analyze the importance of the individual components of serendipity.","PeriodicalId":282561,"journal":{"name":"2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Offline evaluation of the serendipity in recommendation systems\",\"authors\":\"D. Pastukhov, Stanislav Kuznetsov, Vojtěch Vančura, P. Kordík\",\"doi\":\"10.1109/CSIT56902.2022.10000782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Offline optimization of recommender systems is a difficult task. Popular optimization criteria such as RMSE, Recall, and NDCG do not correlate much with online performance, especially when the recommendation algorithm is largely different from the one used to generate the offline data. An exciting direction of research to mitigate this problem is to use more robust optimization criteria. Serendipity is reported to be a promising proxy. However, more variants exist, and it is unclear whether they can be used as a single criterion to optimize. This paper analyzes how serendipity relates to other optimization criteria for three different recommendation algorithms. Based on our findings, we propose to modify the way serendipity is computed. We conduct experiments using three collaborative filtering algorithms: K-Nearest Neighbors, Matrix Factorization, and Embarrassingly Shallow Autoencoder $(EASE^{R})$. We also employ and evaluate the ensemble learning approach and analyze the importance of the individual components of serendipity.\",\"PeriodicalId\":282561,\"journal\":{\"name\":\"2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSIT56902.2022.10000782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSIT56902.2022.10000782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

推荐系统的离线优化是一项艰巨的任务。流行的优化标准,如RMSE、Recall和NDCG,与在线性能没有太大的相关性,特别是当推荐算法与用于生成离线数据的算法有很大不同时。缓解这个问题的一个令人兴奋的研究方向是使用更健壮的优化标准。据报道,机缘巧合是一个很有希望的代理。然而,存在更多的变量,尚不清楚它们是否可以作为一个单一的标准来优化。本文分析了三种不同推荐算法的偶然性与其他优化准则的关系。基于我们的发现,我们建议修改计算意外发现的方法。我们使用三种协同过滤算法进行实验:k近邻,矩阵分解和尴尬浅自动编码器$(EASE^{R})$。我们还采用和评估集成学习方法,并分析偶然性的各个组成部分的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Offline evaluation of the serendipity in recommendation systems
Offline optimization of recommender systems is a difficult task. Popular optimization criteria such as RMSE, Recall, and NDCG do not correlate much with online performance, especially when the recommendation algorithm is largely different from the one used to generate the offline data. An exciting direction of research to mitigate this problem is to use more robust optimization criteria. Serendipity is reported to be a promising proxy. However, more variants exist, and it is unclear whether they can be used as a single criterion to optimize. This paper analyzes how serendipity relates to other optimization criteria for three different recommendation algorithms. Based on our findings, we propose to modify the way serendipity is computed. We conduct experiments using three collaborative filtering algorithms: K-Nearest Neighbors, Matrix Factorization, and Embarrassingly Shallow Autoencoder $(EASE^{R})$. We also employ and evaluate the ensemble learning approach and analyze the importance of the individual components of serendipity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信