实时变分立体重建及其在大规模密集SLAM中的应用

G. Kuschk, Aljaz Bozic, D. Cremers
{"title":"实时变分立体重建及其在大规模密集SLAM中的应用","authors":"G. Kuschk, Aljaz Bozic, D. Cremers","doi":"10.1109/IVS.2017.7995899","DOIUrl":null,"url":null,"abstract":"We propose an algorithm for dense and direct large-scale visual SLAM that runs in real-time on a commodity notebook. A fast variational dense 3D reconstruction algorithm was developed which robustly integrates data terms from multiple images. This mitigates the effect of the aperture problem and is demonstrated on synthetic and real data. An additional property of the variational reconstruction framework is the ability to integrate sparse depth priors (e.g. from RGB-D sensors or LiDAR data) into the early stages of the visual depth reconstruction, leading to an implicit sensor fusion scheme for a variable number of heterogenous depth sensors. Embedded into a keyframe-based SLAM framework, this results in a memory efficient representation of the scene and therefore (in combination with loop-closure detection and pose tracking via direct image alignment) enables us to densely reconstruct large scenes in real-time. Experimental validation on the KITTI dataset shows that our method can recover large-scale and dense reconstructions of entire street scenes in real-time from a driving car.","PeriodicalId":143367,"journal":{"name":"2017 IEEE Intelligent Vehicles Symposium (IV)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Real-time variational stereo reconstruction with applications to large-scale dense SLAM\",\"authors\":\"G. Kuschk, Aljaz Bozic, D. Cremers\",\"doi\":\"10.1109/IVS.2017.7995899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an algorithm for dense and direct large-scale visual SLAM that runs in real-time on a commodity notebook. A fast variational dense 3D reconstruction algorithm was developed which robustly integrates data terms from multiple images. This mitigates the effect of the aperture problem and is demonstrated on synthetic and real data. An additional property of the variational reconstruction framework is the ability to integrate sparse depth priors (e.g. from RGB-D sensors or LiDAR data) into the early stages of the visual depth reconstruction, leading to an implicit sensor fusion scheme for a variable number of heterogenous depth sensors. Embedded into a keyframe-based SLAM framework, this results in a memory efficient representation of the scene and therefore (in combination with loop-closure detection and pose tracking via direct image alignment) enables us to densely reconstruct large scenes in real-time. Experimental validation on the KITTI dataset shows that our method can recover large-scale and dense reconstructions of entire street scenes in real-time from a driving car.\",\"PeriodicalId\":143367,\"journal\":{\"name\":\"2017 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2017.7995899\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2017.7995899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们提出了一种在商用笔记本电脑上实时运行的密集和直接的大规模视觉SLAM算法。提出了一种快速变分密集三维重建算法,实现了多幅图像数据项的鲁棒集成。这种方法减轻了孔径问题的影响,并在合成数据和实际数据上得到了验证。变分重建框架的另一个特性是能够将稀疏深度先验(例如来自RGB-D传感器或LiDAR数据)整合到视觉深度重建的早期阶段,从而为可变数量的异质深度传感器提供隐式传感器融合方案。嵌入到基于关键帧的SLAM框架中,这导致了场景的内存高效表示,因此(结合环闭合检测和通过直接图像对齐的姿态跟踪)使我们能够实时密集地重建大型场景。在KITTI数据集上的实验验证表明,我们的方法可以从行驶中的汽车实时恢复整个街道场景的大规模和密集重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time variational stereo reconstruction with applications to large-scale dense SLAM
We propose an algorithm for dense and direct large-scale visual SLAM that runs in real-time on a commodity notebook. A fast variational dense 3D reconstruction algorithm was developed which robustly integrates data terms from multiple images. This mitigates the effect of the aperture problem and is demonstrated on synthetic and real data. An additional property of the variational reconstruction framework is the ability to integrate sparse depth priors (e.g. from RGB-D sensors or LiDAR data) into the early stages of the visual depth reconstruction, leading to an implicit sensor fusion scheme for a variable number of heterogenous depth sensors. Embedded into a keyframe-based SLAM framework, this results in a memory efficient representation of the scene and therefore (in combination with loop-closure detection and pose tracking via direct image alignment) enables us to densely reconstruct large scenes in real-time. Experimental validation on the KITTI dataset shows that our method can recover large-scale and dense reconstructions of entire street scenes in real-time from a driving car.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信