S. Ippolito, K. Kalantar-zadeh, D. Powell, W. Wlodarski
{"title":"层状声波换能器三维仿真的有限元方法","authors":"S. Ippolito, K. Kalantar-zadeh, D. Powell, W. Wlodarski","doi":"10.1109/COMMAD.2002.1237309","DOIUrl":null,"url":null,"abstract":"Layered Surface Acoustic Wave (SAW) transducers were fabricated and modelled by finite-element method. A comparison of the frequency response of the measured devices and simulated structures are presented. The transducer structure is based on a two-port delay line, employing x-cut, y-propagating lithium niobate (LiNbO/sub 3/) substrate and a thin film zinc oxide (ZnO) guiding layer. A finite-element approach was employed to simulate a 3-dimensional version of the fabricated device. A transient analysis was conducted, where electrical and mechanical boundary values were applied. Simulation results show good agreement with experimental results, indicating that a finite-element approach is appropriate for modelling layered SAW transducers.","PeriodicalId":129668,"journal":{"name":"2002 Conference on Optoelectronic and Microelectronic Materials and Devices. COMMAD 2002. Proceedings (Cat. No.02EX601)","volume":"48 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"A finite element approach for 3-dimensional simulation of layered acoustic wave transducers\",\"authors\":\"S. Ippolito, K. Kalantar-zadeh, D. Powell, W. Wlodarski\",\"doi\":\"10.1109/COMMAD.2002.1237309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Layered Surface Acoustic Wave (SAW) transducers were fabricated and modelled by finite-element method. A comparison of the frequency response of the measured devices and simulated structures are presented. The transducer structure is based on a two-port delay line, employing x-cut, y-propagating lithium niobate (LiNbO/sub 3/) substrate and a thin film zinc oxide (ZnO) guiding layer. A finite-element approach was employed to simulate a 3-dimensional version of the fabricated device. A transient analysis was conducted, where electrical and mechanical boundary values were applied. Simulation results show good agreement with experimental results, indicating that a finite-element approach is appropriate for modelling layered SAW transducers.\",\"PeriodicalId\":129668,\"journal\":{\"name\":\"2002 Conference on Optoelectronic and Microelectronic Materials and Devices. COMMAD 2002. Proceedings (Cat. No.02EX601)\",\"volume\":\"48 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 Conference on Optoelectronic and Microelectronic Materials and Devices. COMMAD 2002. Proceedings (Cat. No.02EX601)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMMAD.2002.1237309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 Conference on Optoelectronic and Microelectronic Materials and Devices. COMMAD 2002. Proceedings (Cat. No.02EX601)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMMAD.2002.1237309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A finite element approach for 3-dimensional simulation of layered acoustic wave transducers
Layered Surface Acoustic Wave (SAW) transducers were fabricated and modelled by finite-element method. A comparison of the frequency response of the measured devices and simulated structures are presented. The transducer structure is based on a two-port delay line, employing x-cut, y-propagating lithium niobate (LiNbO/sub 3/) substrate and a thin film zinc oxide (ZnO) guiding layer. A finite-element approach was employed to simulate a 3-dimensional version of the fabricated device. A transient analysis was conducted, where electrical and mechanical boundary values were applied. Simulation results show good agreement with experimental results, indicating that a finite-element approach is appropriate for modelling layered SAW transducers.