用模糊c均值和多层感知器进行数据输入:简单v/s复杂数据集

S. Azim, Swati Aggarwal
{"title":"用模糊c均值和多层感知器进行数据输入:简单v/s复杂数据集","authors":"S. Azim, Swati Aggarwal","doi":"10.1109/RAIT.2016.7507901","DOIUrl":null,"url":null,"abstract":"Data imputation is the process of filling in the missing value to generate complete records. Complete databases can be analyzed more accurately in comparison to incomplete databases. This paper implements a 2-stage hybrid model for filling in the missing values. Also the effect of the proposed model over simple and complex dataset with varying percentage of missing value and varying value of fuzzifier is evaluated. The accuracy of the model is checked with Mean Absolute Percentage Error (MAPE). The result obtained shows that the proposed model is more accurate in filling multiple values in a record compared to stage 1 alone.","PeriodicalId":289216,"journal":{"name":"2016 3rd International Conference on Recent Advances in Information Technology (RAIT)","volume":"263 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Using fuzzy c means and multi layer perceptron for data imputation: Simple v/s complex dataset\",\"authors\":\"S. Azim, Swati Aggarwal\",\"doi\":\"10.1109/RAIT.2016.7507901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data imputation is the process of filling in the missing value to generate complete records. Complete databases can be analyzed more accurately in comparison to incomplete databases. This paper implements a 2-stage hybrid model for filling in the missing values. Also the effect of the proposed model over simple and complex dataset with varying percentage of missing value and varying value of fuzzifier is evaluated. The accuracy of the model is checked with Mean Absolute Percentage Error (MAPE). The result obtained shows that the proposed model is more accurate in filling multiple values in a record compared to stage 1 alone.\",\"PeriodicalId\":289216,\"journal\":{\"name\":\"2016 3rd International Conference on Recent Advances in Information Technology (RAIT)\",\"volume\":\"263 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 3rd International Conference on Recent Advances in Information Technology (RAIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAIT.2016.7507901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 3rd International Conference on Recent Advances in Information Technology (RAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAIT.2016.7507901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

数据输入是通过填充缺失值来生成完整记录的过程。与不完整的数据库相比,完整的数据库可以更准确地分析。本文实现了一种两阶段混合模型来填补缺失值。并对模型在不同缺失值百分比和不同模糊化值的简单和复杂数据集上的效果进行了评价。用平均绝对百分比误差(MAPE)检验模型的准确性。结果表明,与阶段1相比,所提出的模型在一条记录中填充多个值的精度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using fuzzy c means and multi layer perceptron for data imputation: Simple v/s complex dataset
Data imputation is the process of filling in the missing value to generate complete records. Complete databases can be analyzed more accurately in comparison to incomplete databases. This paper implements a 2-stage hybrid model for filling in the missing values. Also the effect of the proposed model over simple and complex dataset with varying percentage of missing value and varying value of fuzzifier is evaluated. The accuracy of the model is checked with Mean Absolute Percentage Error (MAPE). The result obtained shows that the proposed model is more accurate in filling multiple values in a record compared to stage 1 alone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信