采用INWE的新型节能自校正方法

C. I. Kumar, A. Sharma, S. Miryala, B. Anand
{"title":"采用INWE的新型节能自校正方法","authors":"C. I. Kumar, A. Sharma, S. Miryala, B. Anand","doi":"10.1109/SMACD.2016.7520744","DOIUrl":null,"url":null,"abstract":"Operating VLSI circuits at near/sub-threshold region is emerging as the most important technique for low power applications. However, due to the increasing variability in sub-threshold regime, system performance and yield is at stake. Therefore, improved circuit techniques are needed with low power overhead which can essentially improve the yield. This paper presents a timing error Self Correcting Flip-Flop (SCFF) operating at near threshold voltage. The proposed SCFF automatically corrects timing faults in sequential elements and datapaths, thereby reducing performance degradation due to variations and improves yield. The proposed technique uses Inverse Narrow Width effect (INWE) for performance optimization. The proposed methodology is evaluated by considering few custom circuits along the data-path. The simulation results show that the proposed SCFF design achieves better yield ratio for a given frequency specification, ~0.33 at 0.4v and ~0.32 at 0.35v supply voltage against existing error detection and correction methods.","PeriodicalId":441203,"journal":{"name":"2016 13th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A novel energy-efficient self-correcting methodology employing INWE\",\"authors\":\"C. I. Kumar, A. Sharma, S. Miryala, B. Anand\",\"doi\":\"10.1109/SMACD.2016.7520744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Operating VLSI circuits at near/sub-threshold region is emerging as the most important technique for low power applications. However, due to the increasing variability in sub-threshold regime, system performance and yield is at stake. Therefore, improved circuit techniques are needed with low power overhead which can essentially improve the yield. This paper presents a timing error Self Correcting Flip-Flop (SCFF) operating at near threshold voltage. The proposed SCFF automatically corrects timing faults in sequential elements and datapaths, thereby reducing performance degradation due to variations and improves yield. The proposed technique uses Inverse Narrow Width effect (INWE) for performance optimization. The proposed methodology is evaluated by considering few custom circuits along the data-path. The simulation results show that the proposed SCFF design achieves better yield ratio for a given frequency specification, ~0.33 at 0.4v and ~0.32 at 0.35v supply voltage against existing error detection and correction methods.\",\"PeriodicalId\":441203,\"journal\":{\"name\":\"2016 13th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 13th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMACD.2016.7520744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMACD.2016.7520744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在近/亚阈值区域操作VLSI电路是低功耗应用中最重要的技术。然而,由于亚阈值状态的变异性增加,系统性能和产量受到威胁。因此,需要改进电路技术,降低功耗,从而从根本上提高成品率。提出了一种工作在近阈值电压下的时序误差自校正触发器(SCFF)。所提出的SCFF自动纠正序列元素和数据路径中的时序错误,从而减少由于变化而导致的性能下降并提高成品率。该技术利用逆窄宽度效应(INWE)进行性能优化。通过考虑沿数据路径的几个自定义电路来评估所提出的方法。仿真结果表明,在给定的频率规格下,与现有的误差检测和校正方法相比,所提出的SCFF设计获得了更好的良率,0.4v时良率为~0.33,0.35v时良率为~0.32。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel energy-efficient self-correcting methodology employing INWE
Operating VLSI circuits at near/sub-threshold region is emerging as the most important technique for low power applications. However, due to the increasing variability in sub-threshold regime, system performance and yield is at stake. Therefore, improved circuit techniques are needed with low power overhead which can essentially improve the yield. This paper presents a timing error Self Correcting Flip-Flop (SCFF) operating at near threshold voltage. The proposed SCFF automatically corrects timing faults in sequential elements and datapaths, thereby reducing performance degradation due to variations and improves yield. The proposed technique uses Inverse Narrow Width effect (INWE) for performance optimization. The proposed methodology is evaluated by considering few custom circuits along the data-path. The simulation results show that the proposed SCFF design achieves better yield ratio for a given frequency specification, ~0.33 at 0.4v and ~0.32 at 0.35v supply voltage against existing error detection and correction methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信