Vinicius Bohrer, Ramon Fernandes, C. Marcon, T. Webber, L. Poehls, R. Czekster, Fabiano Hessel
{"title":"一种灵活的多用途无线网络建模与仿真框架","authors":"Vinicius Bohrer, Ramon Fernandes, C. Marcon, T. Webber, L. Poehls, R. Czekster, Fabiano Hessel","doi":"10.1109/RSP.2013.6683964","DOIUrl":null,"url":null,"abstract":"The emergence of wireless networks has contributed to a growing number of studies and protocols regarding its performance and reliability requirements, among others. Several issues have to be considered when deploying such devices under harsh environmental conditions. These issues often force the designer to adopt decisions that are usually difficult to verify in real world settings. In order to mitigate such problems, an alternative resides in the use of simulation models for both homogeneous and heterogeneous devices. This paper describes an event-based Wireless Network Simulator (WiNeS) for devices operating in several topologies and configurations of networks. WiNeS is a Java-based framework specially built to support customized network options that offers hybrid simulation for virtual and physical nodes in the same environment. Some of WiNeS' features include the computation of maximum communication distances among devices in 2D and 3D spatial node distributions as well as pairing rules to evaluate the nodes connectivity.","PeriodicalId":227927,"journal":{"name":"2013 International Symposium on Rapid System Prototyping (RSP)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A flexible framework for modeling and simulation of multipurpose wireless networks\",\"authors\":\"Vinicius Bohrer, Ramon Fernandes, C. Marcon, T. Webber, L. Poehls, R. Czekster, Fabiano Hessel\",\"doi\":\"10.1109/RSP.2013.6683964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of wireless networks has contributed to a growing number of studies and protocols regarding its performance and reliability requirements, among others. Several issues have to be considered when deploying such devices under harsh environmental conditions. These issues often force the designer to adopt decisions that are usually difficult to verify in real world settings. In order to mitigate such problems, an alternative resides in the use of simulation models for both homogeneous and heterogeneous devices. This paper describes an event-based Wireless Network Simulator (WiNeS) for devices operating in several topologies and configurations of networks. WiNeS is a Java-based framework specially built to support customized network options that offers hybrid simulation for virtual and physical nodes in the same environment. Some of WiNeS' features include the computation of maximum communication distances among devices in 2D and 3D spatial node distributions as well as pairing rules to evaluate the nodes connectivity.\",\"PeriodicalId\":227927,\"journal\":{\"name\":\"2013 International Symposium on Rapid System Prototyping (RSP)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Symposium on Rapid System Prototyping (RSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RSP.2013.6683964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Symposium on Rapid System Prototyping (RSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSP.2013.6683964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A flexible framework for modeling and simulation of multipurpose wireless networks
The emergence of wireless networks has contributed to a growing number of studies and protocols regarding its performance and reliability requirements, among others. Several issues have to be considered when deploying such devices under harsh environmental conditions. These issues often force the designer to adopt decisions that are usually difficult to verify in real world settings. In order to mitigate such problems, an alternative resides in the use of simulation models for both homogeneous and heterogeneous devices. This paper describes an event-based Wireless Network Simulator (WiNeS) for devices operating in several topologies and configurations of networks. WiNeS is a Java-based framework specially built to support customized network options that offers hybrid simulation for virtual and physical nodes in the same environment. Some of WiNeS' features include the computation of maximum communication distances among devices in 2D and 3D spatial node distributions as well as pairing rules to evaluate the nodes connectivity.