检测标记的人在相机图像

Muhammed Telceken, Y. Kutlu
{"title":"检测标记的人在相机图像","authors":"Muhammed Telceken, Y. Kutlu","doi":"10.54856/jiswa.202205197","DOIUrl":null,"url":null,"abstract":"With the development of technology, cameras are used more widely. It is possible to evaluate the widespread use of cameras in various subjects in daily life. Especially face recognition systems are one of the most important areas of use of cameras. Facial recognition systems can be used in many areas such as cyber security, entertainment, security applications of daily used devices, and faster and easier transactions in financial areas. Although a lot of progress has been made in this regard, face recognition systems are still used widely enough because it is thought that they have weaknesses in terms of security. Many scientists are working on facial recognition. In this study, it is aimed to detect the faces of people determined from videos or live camera images in the best and safest way. Yolov4 object detection algorithm, a ready-made algorithm, was used for the detection of human faces on images. The faces of the people in the images were detected by training the data set we created in the Yolov4 algorithm. An accuracy of 99.1 has been achieved for detecting people's faces on images. The data set we created with pictures of certain people is trained in the CNN algorithm. The faces of the people detected on the images were classified on the model trained with the CNN algorithm for the identification of the people, and the accuracy value was examined for the detection of the identified people on the video recordings or live images from the cameras.","PeriodicalId":112412,"journal":{"name":"Journal of Intelligent Systems with Applications","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting Tagged People in Camera Images\",\"authors\":\"Muhammed Telceken, Y. Kutlu\",\"doi\":\"10.54856/jiswa.202205197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of technology, cameras are used more widely. It is possible to evaluate the widespread use of cameras in various subjects in daily life. Especially face recognition systems are one of the most important areas of use of cameras. Facial recognition systems can be used in many areas such as cyber security, entertainment, security applications of daily used devices, and faster and easier transactions in financial areas. Although a lot of progress has been made in this regard, face recognition systems are still used widely enough because it is thought that they have weaknesses in terms of security. Many scientists are working on facial recognition. In this study, it is aimed to detect the faces of people determined from videos or live camera images in the best and safest way. Yolov4 object detection algorithm, a ready-made algorithm, was used for the detection of human faces on images. The faces of the people in the images were detected by training the data set we created in the Yolov4 algorithm. An accuracy of 99.1 has been achieved for detecting people's faces on images. The data set we created with pictures of certain people is trained in the CNN algorithm. The faces of the people detected on the images were classified on the model trained with the CNN algorithm for the identification of the people, and the accuracy value was examined for the detection of the identified people on the video recordings or live images from the cameras.\",\"PeriodicalId\":112412,\"journal\":{\"name\":\"Journal of Intelligent Systems with Applications\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Systems with Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54856/jiswa.202205197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54856/jiswa.202205197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着科技的发展,摄像机的应用越来越广泛。相机在日常生活中的广泛应用是可以评估的。尤其是人脸识别系统是摄像头最重要的应用领域之一。面部识别系统可用于网络安全、娱乐、日常使用设备的安全应用以及金融领域更快、更容易的交易等许多领域。尽管在这方面已经取得了很大的进展,但人脸识别系统仍然被广泛使用,因为人们认为它们在安全性方面存在弱点。许多科学家正在研究面部识别。在这项研究中,它旨在以最好和最安全的方式检测从视频或实时摄像机图像中确定的人的面部。使用现成的Yolov4目标检测算法对图像上的人脸进行检测。通过训练我们在yolo4算法中创建的数据集来检测图像中人物的面部。在图像上检测人脸的准确率达到了99.1。我们用某些人的照片创建的数据集是在CNN算法中训练的。对图像上检测到的人的面部进行分类,使用CNN算法训练的模型进行人的识别,并检查对视频记录或摄像机实时图像上识别的人的检测精度值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting Tagged People in Camera Images
With the development of technology, cameras are used more widely. It is possible to evaluate the widespread use of cameras in various subjects in daily life. Especially face recognition systems are one of the most important areas of use of cameras. Facial recognition systems can be used in many areas such as cyber security, entertainment, security applications of daily used devices, and faster and easier transactions in financial areas. Although a lot of progress has been made in this regard, face recognition systems are still used widely enough because it is thought that they have weaknesses in terms of security. Many scientists are working on facial recognition. In this study, it is aimed to detect the faces of people determined from videos or live camera images in the best and safest way. Yolov4 object detection algorithm, a ready-made algorithm, was used for the detection of human faces on images. The faces of the people in the images were detected by training the data set we created in the Yolov4 algorithm. An accuracy of 99.1 has been achieved for detecting people's faces on images. The data set we created with pictures of certain people is trained in the CNN algorithm. The faces of the people detected on the images were classified on the model trained with the CNN algorithm for the identification of the people, and the accuracy value was examined for the detection of the identified people on the video recordings or live images from the cameras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信