基于转置卷积网络的输电网络空间外推设计

O. W. Bhatti, M. Swaminathan
{"title":"基于转置卷积网络的输电网络空间外推设计","authors":"O. W. Bhatti, M. Swaminathan","doi":"10.1109/ISQED51717.2021.9424309","DOIUrl":null,"url":null,"abstract":"The geometrical and material properties of distributed electromagnetic structures comprise the design space. This space characterizes the structure’s frequency response in complex domain. In this paper, we propose a machine learning framework for predicting frequency response of a power delivery network as a function of its extrapolated multidimensional geometrical and material parameters. The proposed approach comprises of an ensemble of architectures: (1) Fully Connected Upsampler for latent code generation (2) Convolutional Decoder to learn the frequency response from the latent code. The 14D design space is converted to a Lth dimensional code which entails the frequency response information. With the proposed architecture, a root mean squared error of 0.004 ohms is achieved when compared to the true value. We focus on extrapolation of design space parameters while training on in-band values. We also illustrate how frequency poles move with varying design space exploiting parameter sensitivity in different frequency bands.","PeriodicalId":123018,"journal":{"name":"2021 22nd International Symposium on Quality Electronic Design (ISQED)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design Space Extrapolation for Power Delivery Networks using a Transposed Convolutional Net\",\"authors\":\"O. W. Bhatti, M. Swaminathan\",\"doi\":\"10.1109/ISQED51717.2021.9424309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The geometrical and material properties of distributed electromagnetic structures comprise the design space. This space characterizes the structure’s frequency response in complex domain. In this paper, we propose a machine learning framework for predicting frequency response of a power delivery network as a function of its extrapolated multidimensional geometrical and material parameters. The proposed approach comprises of an ensemble of architectures: (1) Fully Connected Upsampler for latent code generation (2) Convolutional Decoder to learn the frequency response from the latent code. The 14D design space is converted to a Lth dimensional code which entails the frequency response information. With the proposed architecture, a root mean squared error of 0.004 ohms is achieved when compared to the true value. We focus on extrapolation of design space parameters while training on in-band values. We also illustrate how frequency poles move with varying design space exploiting parameter sensitivity in different frequency bands.\",\"PeriodicalId\":123018,\"journal\":{\"name\":\"2021 22nd International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 22nd International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED51717.2021.9424309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 22nd International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED51717.2021.9424309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

分布式电磁结构的几何特性和材料特性构成了设计空间。这个空间表征了结构在复域中的频率响应。在本文中,我们提出了一个机器学习框架,用于预测电力输送网络的频率响应,作为其外推的多维几何和材料参数的函数。所提出的方法包括以下架构:(1)用于潜在代码生成的全连接上采样器(2)用于从潜在代码中学习频率响应的卷积解码器。将14D设计空间转换为包含频率响应信息的Lth维代码。采用所提出的结构,与真实值相比,均方根误差为0.004欧姆。我们专注于设计空间参数的外推,同时训练带内值。我们还说明了频率极点如何随着不同设计空间的变化而移动,利用不同频段的参数灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design Space Extrapolation for Power Delivery Networks using a Transposed Convolutional Net
The geometrical and material properties of distributed electromagnetic structures comprise the design space. This space characterizes the structure’s frequency response in complex domain. In this paper, we propose a machine learning framework for predicting frequency response of a power delivery network as a function of its extrapolated multidimensional geometrical and material parameters. The proposed approach comprises of an ensemble of architectures: (1) Fully Connected Upsampler for latent code generation (2) Convolutional Decoder to learn the frequency response from the latent code. The 14D design space is converted to a Lth dimensional code which entails the frequency response information. With the proposed architecture, a root mean squared error of 0.004 ohms is achieved when compared to the true value. We focus on extrapolation of design space parameters while training on in-band values. We also illustrate how frequency poles move with varying design space exploiting parameter sensitivity in different frequency bands.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信