轮式倒立摆系统鲁棒h -∞反步控制设计

N. Binh, N. Hung, Nguyen Anh Tung, Dao Phuong Nam, N. T. Long
{"title":"轮式倒立摆系统鲁棒h -∞反步控制设计","authors":"N. Binh, N. Hung, Nguyen Anh Tung, Dao Phuong Nam, N. T. Long","doi":"10.1109/ICSSE.2017.8030914","DOIUrl":null,"url":null,"abstract":"The issue of applying H∞ to control wheeled inverted pendulum is a topic of much concern on account of underactuated and nonlinear model. Authors in [1] selected Lyapunov candidate function presented following HJ equation. Almost previous papers using H - infinity to control WIP must assume that desired accelerator is zero and model is linearized at origin, leading to that system does not obtain global asymptotical stability when angular error leave neighborhood of origin. In this paper, we propose a new control method applying H - infinity and Backstepping technique based on Lyapunov direct method to stabilize tracking error to converge to arbitrary ball of origin. The simulation results of WIP under bounded disturbances demonstrate the effectiveness of the proposed controller.","PeriodicalId":296191,"journal":{"name":"2017 International Conference on System Science and Engineering (ICSSE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Robust H-infinity backstepping control design of a wheeled inverted pendulum system\",\"authors\":\"N. Binh, N. Hung, Nguyen Anh Tung, Dao Phuong Nam, N. T. Long\",\"doi\":\"10.1109/ICSSE.2017.8030914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The issue of applying H∞ to control wheeled inverted pendulum is a topic of much concern on account of underactuated and nonlinear model. Authors in [1] selected Lyapunov candidate function presented following HJ equation. Almost previous papers using H - infinity to control WIP must assume that desired accelerator is zero and model is linearized at origin, leading to that system does not obtain global asymptotical stability when angular error leave neighborhood of origin. In this paper, we propose a new control method applying H - infinity and Backstepping technique based on Lyapunov direct method to stabilize tracking error to converge to arbitrary ball of origin. The simulation results of WIP under bounded disturbances demonstrate the effectiveness of the proposed controller.\",\"PeriodicalId\":296191,\"journal\":{\"name\":\"2017 International Conference on System Science and Engineering (ICSSE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on System Science and Engineering (ICSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSSE.2017.8030914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on System Science and Engineering (ICSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSE.2017.8030914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

由于轮式倒立摆的欠驱动和非线性模型,如何应用H∞控制轮式倒立摆是一个备受关注的问题。作者在[1]中选取的Lyapunov候选函数表示如下HJ方程。以往使用H -∞来控制WIP的论文几乎都必须假设期望加速器为零,并且模型在原点处线性化,导致当角误差离开原点邻域时系统不能获得全局渐近稳定。本文提出了一种基于李雅普诺夫直接法,利用H -∞和反演技术稳定跟踪误差收敛到任意原点球的控制方法。在有界扰动下的WIP仿真结果验证了所提控制器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust H-infinity backstepping control design of a wheeled inverted pendulum system
The issue of applying H∞ to control wheeled inverted pendulum is a topic of much concern on account of underactuated and nonlinear model. Authors in [1] selected Lyapunov candidate function presented following HJ equation. Almost previous papers using H - infinity to control WIP must assume that desired accelerator is zero and model is linearized at origin, leading to that system does not obtain global asymptotical stability when angular error leave neighborhood of origin. In this paper, we propose a new control method applying H - infinity and Backstepping technique based on Lyapunov direct method to stabilize tracking error to converge to arbitrary ball of origin. The simulation results of WIP under bounded disturbances demonstrate the effectiveness of the proposed controller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信