磁性纳米系统在药物输送和生物医学应用

Saritha Shetty, A. Upadhya
{"title":"磁性纳米系统在药物输送和生物医学应用","authors":"Saritha Shetty, A. Upadhya","doi":"10.4018/978-1-5225-4781-5.CH007","DOIUrl":null,"url":null,"abstract":"Nanotechnology is that sphere of technology that involves the participation of biology, chemistry, physics, and engineering sciences. Nanoscale science defines the chemistry and physics of structures lying in the range of 1-100 nm. Among the nanosystems researched, magnetic nanosystems are highlighted due their unique ability, which enables their targeting to specific locations on application of an external magnetic field. The exhibited property of these magnetic nanosystems being super-paramagnetism, there is no retention of magnetic property on removal of the magnetic field, thus enabling a reversion of the targeting process. For effective utilization of these nanosystems, they should be reduced to nanosizes, layered with biocompatible entities, stabilized, and functionalized. In the chapter, synthesis and functionalization and stabilization are elucidated. The biomedical applications such as targeted delivery, MRI, magnetic hyperthermia, tissue engineering, gene delivery, magnetic immunotherapy, magnetic detoxification, and nanomagnetic actuation are discussed.","PeriodicalId":375268,"journal":{"name":"Research Anthology on Emerging Technologies and Ethical Implications in Human Enhancement","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Magnetic Nano-Systems in Drug Delivery and Biomedical Applications\",\"authors\":\"Saritha Shetty, A. Upadhya\",\"doi\":\"10.4018/978-1-5225-4781-5.CH007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanotechnology is that sphere of technology that involves the participation of biology, chemistry, physics, and engineering sciences. Nanoscale science defines the chemistry and physics of structures lying in the range of 1-100 nm. Among the nanosystems researched, magnetic nanosystems are highlighted due their unique ability, which enables their targeting to specific locations on application of an external magnetic field. The exhibited property of these magnetic nanosystems being super-paramagnetism, there is no retention of magnetic property on removal of the magnetic field, thus enabling a reversion of the targeting process. For effective utilization of these nanosystems, they should be reduced to nanosizes, layered with biocompatible entities, stabilized, and functionalized. In the chapter, synthesis and functionalization and stabilization are elucidated. The biomedical applications such as targeted delivery, MRI, magnetic hyperthermia, tissue engineering, gene delivery, magnetic immunotherapy, magnetic detoxification, and nanomagnetic actuation are discussed.\",\"PeriodicalId\":375268,\"journal\":{\"name\":\"Research Anthology on Emerging Technologies and Ethical Implications in Human Enhancement\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Anthology on Emerging Technologies and Ethical Implications in Human Enhancement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-5225-4781-5.CH007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Anthology on Emerging Technologies and Ethical Implications in Human Enhancement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-4781-5.CH007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

纳米技术是涉及生物、化学、物理和工程科学的技术领域。纳米尺度科学定义了1-100纳米范围内结构的化学和物理。在研究的纳米系统中,磁性纳米系统由于其独特的能力而受到重视,它可以在外加磁场的作用下定位到特定的位置。这些磁性纳米系统表现出超顺磁性,在磁场去除后磁性不会保留,从而实现了靶向过程的逆转。为了有效地利用这些纳米系统,它们应该缩小到纳米尺寸,与生物相容的实体分层,稳定和功能化。在这一章中,对合成、功能化和稳定化进行了阐述。讨论了定向递送、核磁共振、磁热疗、组织工程、基因递送、磁免疫治疗、磁解毒和纳米磁驱动等生物医学应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnetic Nano-Systems in Drug Delivery and Biomedical Applications
Nanotechnology is that sphere of technology that involves the participation of biology, chemistry, physics, and engineering sciences. Nanoscale science defines the chemistry and physics of structures lying in the range of 1-100 nm. Among the nanosystems researched, magnetic nanosystems are highlighted due their unique ability, which enables their targeting to specific locations on application of an external magnetic field. The exhibited property of these magnetic nanosystems being super-paramagnetism, there is no retention of magnetic property on removal of the magnetic field, thus enabling a reversion of the targeting process. For effective utilization of these nanosystems, they should be reduced to nanosizes, layered with biocompatible entities, stabilized, and functionalized. In the chapter, synthesis and functionalization and stabilization are elucidated. The biomedical applications such as targeted delivery, MRI, magnetic hyperthermia, tissue engineering, gene delivery, magnetic immunotherapy, magnetic detoxification, and nanomagnetic actuation are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信