基于能量函数的ANFIS控制UPFC暂态稳定性改进

F. Taki, S. Abazari, G. Arab Markadeh
{"title":"基于能量函数的ANFIS控制UPFC暂态稳定性改进","authors":"F. Taki, S. Abazari, G. Arab Markadeh","doi":"10.1109/IRANIANCEE.2010.5506943","DOIUrl":null,"url":null,"abstract":"This paper presents the application of a neuro-fuzzy controlled Unified Power Flow Controller (UPFC) to improve transient stability of power system. In neuro-fuzzy control method the membership function parameters of fuzzy controller can be computed with learning information about a data set. This Adaptive Network Fuzzy Inference System (ANFIS) can track the given input-output data the best. The process of training data generation is based on maximizing the energy function of UPFC. Proposed method is tested on a single machine infinitive bus system to confirm its performance through simulation. The results prove the noticeable influence of neuro-fuzzy controlled UPFC on increasing Critical Clearing Time (CCT) of system.","PeriodicalId":282587,"journal":{"name":"2010 18th Iranian Conference on Electrical Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Transient stability improvement using ANFIS controlled UPFC based on energy function\",\"authors\":\"F. Taki, S. Abazari, G. Arab Markadeh\",\"doi\":\"10.1109/IRANIANCEE.2010.5506943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the application of a neuro-fuzzy controlled Unified Power Flow Controller (UPFC) to improve transient stability of power system. In neuro-fuzzy control method the membership function parameters of fuzzy controller can be computed with learning information about a data set. This Adaptive Network Fuzzy Inference System (ANFIS) can track the given input-output data the best. The process of training data generation is based on maximizing the energy function of UPFC. Proposed method is tested on a single machine infinitive bus system to confirm its performance through simulation. The results prove the noticeable influence of neuro-fuzzy controlled UPFC on increasing Critical Clearing Time (CCT) of system.\",\"PeriodicalId\":282587,\"journal\":{\"name\":\"2010 18th Iranian Conference on Electrical Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 18th Iranian Conference on Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRANIANCEE.2010.5506943\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 18th Iranian Conference on Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANCEE.2010.5506943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种神经模糊控制统一潮流控制器(UPFC)在提高电力系统暂态稳定性方面的应用。在神经模糊控制方法中,模糊控制器的隶属函数参数可以通过学习数据集的信息来计算。该自适应网络模糊推理系统(ANFIS)能对给定的输入输出数据进行最佳跟踪。训练数据生成的过程是基于最大化UPFC的能量函数。在单机不定式总线系统上进行了仿真试验,验证了该方法的性能。结果表明,神经模糊控制UPFC对提高系统的临界清除时间(CCT)有显著的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transient stability improvement using ANFIS controlled UPFC based on energy function
This paper presents the application of a neuro-fuzzy controlled Unified Power Flow Controller (UPFC) to improve transient stability of power system. In neuro-fuzzy control method the membership function parameters of fuzzy controller can be computed with learning information about a data set. This Adaptive Network Fuzzy Inference System (ANFIS) can track the given input-output data the best. The process of training data generation is based on maximizing the energy function of UPFC. Proposed method is tested on a single machine infinitive bus system to confirm its performance through simulation. The results prove the noticeable influence of neuro-fuzzy controlled UPFC on increasing Critical Clearing Time (CCT) of system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信