S. Nicolson, A. Tomkins, K. W. Tang, A. Cathelin, D. Belot, S. Voinigescu
{"title":"1.2V, 140GHz接收器,65nm CMOS片上天线","authors":"S. Nicolson, A. Tomkins, K. W. Tang, A. Cathelin, D. Belot, S. Voinigescu","doi":"10.1109/RFIC.2008.4561424","DOIUrl":null,"url":null,"abstract":"This paper presents a 1.2 V, 100 mW, 140 GHz receiver with on-die antenna in a 65 nm General Purpose (GP) CMOS process with digital back-end. The receiver has a conversion loss of 15-19 dB in the 100-140 GHz range with 102 GHz LO, and occupies a die area of only 580 mum times 700 mum including pads. The LNA achieves 8 dB gain at 140 GHz, 10 GHz bandwidth, at least -1.8 dBm of saturated output power, and maintains 3 dB gain at 125 degC. The on-chip antenna, which meets all density fill requirements of 65 nm CMOS, has -25 dB gain, and occupies 180 mum times 100 mum of die area. Additionally, design techniques which maximize the millimeter-wave performance of CMOS devices are discussed.","PeriodicalId":253375,"journal":{"name":"2008 IEEE Radio Frequency Integrated Circuits Symposium","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"85","resultStr":"{\"title\":\"A 1.2V, 140GHz receiver with on-die antenna in 65nm CMOS\",\"authors\":\"S. Nicolson, A. Tomkins, K. W. Tang, A. Cathelin, D. Belot, S. Voinigescu\",\"doi\":\"10.1109/RFIC.2008.4561424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a 1.2 V, 100 mW, 140 GHz receiver with on-die antenna in a 65 nm General Purpose (GP) CMOS process with digital back-end. The receiver has a conversion loss of 15-19 dB in the 100-140 GHz range with 102 GHz LO, and occupies a die area of only 580 mum times 700 mum including pads. The LNA achieves 8 dB gain at 140 GHz, 10 GHz bandwidth, at least -1.8 dBm of saturated output power, and maintains 3 dB gain at 125 degC. The on-chip antenna, which meets all density fill requirements of 65 nm CMOS, has -25 dB gain, and occupies 180 mum times 100 mum of die area. Additionally, design techniques which maximize the millimeter-wave performance of CMOS devices are discussed.\",\"PeriodicalId\":253375,\"journal\":{\"name\":\"2008 IEEE Radio Frequency Integrated Circuits Symposium\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"85\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Radio Frequency Integrated Circuits Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFIC.2008.4561424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Radio Frequency Integrated Circuits Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC.2008.4561424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 1.2V, 140GHz receiver with on-die antenna in 65nm CMOS
This paper presents a 1.2 V, 100 mW, 140 GHz receiver with on-die antenna in a 65 nm General Purpose (GP) CMOS process with digital back-end. The receiver has a conversion loss of 15-19 dB in the 100-140 GHz range with 102 GHz LO, and occupies a die area of only 580 mum times 700 mum including pads. The LNA achieves 8 dB gain at 140 GHz, 10 GHz bandwidth, at least -1.8 dBm of saturated output power, and maintains 3 dB gain at 125 degC. The on-chip antenna, which meets all density fill requirements of 65 nm CMOS, has -25 dB gain, and occupies 180 mum times 100 mum of die area. Additionally, design techniques which maximize the millimeter-wave performance of CMOS devices are discussed.