共同知识的迭代定义状态的分类表征

F. Tohmé, G. Caterina, Rocco Gangle
{"title":"共同知识的迭代定义状态的分类表征","authors":"F. Tohmé, G. Caterina, Rocco Gangle","doi":"10.21638/11701/spbu31.2021.24","DOIUrl":null,"url":null,"abstract":"We present here a novel approach to the analysis of common knowledge based on category theory. In particular, we model the global epistemic state for a given set of agents through a hierarchy of beliefs represented by a presheaf construction. Then, by employing the properties of a categorical monad, we prove the existence of a state, obtained in an iterative fashion, in which all agents acquire common knowledge of some underlying statement. In order to guarantee the existence of a fixed point under certain suitable conditions, we make use of the properties entailed by Sergeyev's numeral system called grossone, which allows a finer control on the relevant structure of the infinitely nested epistemic states.","PeriodicalId":235627,"journal":{"name":"Contributions to Game Theory and Management","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Categorical Characterization of a ①-Iteratively De ned State of Common Knowledge\",\"authors\":\"F. Tohmé, G. Caterina, Rocco Gangle\",\"doi\":\"10.21638/11701/spbu31.2021.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present here a novel approach to the analysis of common knowledge based on category theory. In particular, we model the global epistemic state for a given set of agents through a hierarchy of beliefs represented by a presheaf construction. Then, by employing the properties of a categorical monad, we prove the existence of a state, obtained in an iterative fashion, in which all agents acquire common knowledge of some underlying statement. In order to guarantee the existence of a fixed point under certain suitable conditions, we make use of the properties entailed by Sergeyev's numeral system called grossone, which allows a finer control on the relevant structure of the infinitely nested epistemic states.\",\"PeriodicalId\":235627,\"journal\":{\"name\":\"Contributions to Game Theory and Management\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contributions to Game Theory and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21638/11701/spbu31.2021.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Game Theory and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21638/11701/spbu31.2021.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于范畴论的公共知识分析新方法。特别地,我们通过一个由presheaf结构表示的信念层次来为一组给定的智能体建立全局认知状态模型。然后,通过使用范畴单子的属性,我们证明了一种状态的存在,以迭代的方式获得,在这种状态下,所有的代理都获得了一些潜在陈述的共同知识。为了保证在某些适当条件下不动点的存在性,我们利用了谢尔盖耶夫(Sergeyev)的称为grossone的数字系统所包含的性质,它允许对无限嵌套的认知状态的相关结构进行更好的控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Categorical Characterization of a ①-Iteratively De ned State of Common Knowledge
We present here a novel approach to the analysis of common knowledge based on category theory. In particular, we model the global epistemic state for a given set of agents through a hierarchy of beliefs represented by a presheaf construction. Then, by employing the properties of a categorical monad, we prove the existence of a state, obtained in an iterative fashion, in which all agents acquire common knowledge of some underlying statement. In order to guarantee the existence of a fixed point under certain suitable conditions, we make use of the properties entailed by Sergeyev's numeral system called grossone, which allows a finer control on the relevant structure of the infinitely nested epistemic states.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信