{"title":"非同步涡旋对共振后反向涡旋激励的重力影响","authors":"Rafath Abdul Nasar, Mohammad A. AL-Shudeifat","doi":"10.1115/imece2022-95344","DOIUrl":null,"url":null,"abstract":"\n Rotordynamical systems are usually exposed to recurrent transition through their resonance rotational speeds during runup and coast-down operations. As a result, a nonsynchronous whirl between the shaft rotation and its lateral whirling occurs at the neighborhood of the critical resonance speeds. This nonsynchronous whirl has a significant impact on the system when a breathing crack starts to propagate. The horizontal Jeffcott rotor model with a breathing crack is considered here to study the combined effect of the gravity force vector and the nonsynchronous whirl on post-resonance backward whirl (Po-BW) excitation. The numerical simulation results show that the gravity further intensifies the excitation of the Po-BW in the horizontal cracked rotor compared with the vertical one at relatively small crack depths. In addition, the unbalance force vector orientation has been found to significantly affect the Po-BW excitation and its recurrence.","PeriodicalId":302047,"journal":{"name":"Volume 5: Dynamics, Vibration, and Control","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gravity Impact on Post-Resonance Backward Whirl Excitation by the Nonsynchronous Whirl\",\"authors\":\"Rafath Abdul Nasar, Mohammad A. AL-Shudeifat\",\"doi\":\"10.1115/imece2022-95344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Rotordynamical systems are usually exposed to recurrent transition through their resonance rotational speeds during runup and coast-down operations. As a result, a nonsynchronous whirl between the shaft rotation and its lateral whirling occurs at the neighborhood of the critical resonance speeds. This nonsynchronous whirl has a significant impact on the system when a breathing crack starts to propagate. The horizontal Jeffcott rotor model with a breathing crack is considered here to study the combined effect of the gravity force vector and the nonsynchronous whirl on post-resonance backward whirl (Po-BW) excitation. The numerical simulation results show that the gravity further intensifies the excitation of the Po-BW in the horizontal cracked rotor compared with the vertical one at relatively small crack depths. In addition, the unbalance force vector orientation has been found to significantly affect the Po-BW excitation and its recurrence.\",\"PeriodicalId\":302047,\"journal\":{\"name\":\"Volume 5: Dynamics, Vibration, and Control\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5: Dynamics, Vibration, and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2022-95344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: Dynamics, Vibration, and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2022-95344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gravity Impact on Post-Resonance Backward Whirl Excitation by the Nonsynchronous Whirl
Rotordynamical systems are usually exposed to recurrent transition through their resonance rotational speeds during runup and coast-down operations. As a result, a nonsynchronous whirl between the shaft rotation and its lateral whirling occurs at the neighborhood of the critical resonance speeds. This nonsynchronous whirl has a significant impact on the system when a breathing crack starts to propagate. The horizontal Jeffcott rotor model with a breathing crack is considered here to study the combined effect of the gravity force vector and the nonsynchronous whirl on post-resonance backward whirl (Po-BW) excitation. The numerical simulation results show that the gravity further intensifies the excitation of the Po-BW in the horizontal cracked rotor compared with the vertical one at relatively small crack depths. In addition, the unbalance force vector orientation has been found to significantly affect the Po-BW excitation and its recurrence.