{"title":"基于Spartan 3S1000 FPGA的前馈人工神经网络血型分类样机","authors":"R. Priramadhi, Denny Darlis","doi":"10.25124/ijait.v5i01.3220","DOIUrl":null,"url":null,"abstract":"In this research, a Feed-Forward Artificial Neural Network design was implemented on Xilinx Spartan 3S1000 Field Programable Gate Array using XSA-3S Board and prototyped blood type classification device. This research uses blood sample images as a system input. The system was built using VHSIC Hardware Description Language to describe the feed-forward propagation with a backpropagation neural network algorithm. We use three layers for the feed-forward ANN design with two hidden layers. The hidden layer designed has two neurons. In this study, the accuracy of detection obtained for four-type blood image resolutions results from 86%-92%, respectively.","PeriodicalId":301335,"journal":{"name":"IJAIT (International Journal of Applied Information Technology)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prototyping Feed-Forward Artificial Neural Network on Spartan 3S1000 FPGA for Blood Type Classification\",\"authors\":\"R. Priramadhi, Denny Darlis\",\"doi\":\"10.25124/ijait.v5i01.3220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, a Feed-Forward Artificial Neural Network design was implemented on Xilinx Spartan 3S1000 Field Programable Gate Array using XSA-3S Board and prototyped blood type classification device. This research uses blood sample images as a system input. The system was built using VHSIC Hardware Description Language to describe the feed-forward propagation with a backpropagation neural network algorithm. We use three layers for the feed-forward ANN design with two hidden layers. The hidden layer designed has two neurons. In this study, the accuracy of detection obtained for four-type blood image resolutions results from 86%-92%, respectively.\",\"PeriodicalId\":301335,\"journal\":{\"name\":\"IJAIT (International Journal of Applied Information Technology)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJAIT (International Journal of Applied Information Technology)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25124/ijait.v5i01.3220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJAIT (International Journal of Applied Information Technology)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25124/ijait.v5i01.3220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prototyping Feed-Forward Artificial Neural Network on Spartan 3S1000 FPGA for Blood Type Classification
In this research, a Feed-Forward Artificial Neural Network design was implemented on Xilinx Spartan 3S1000 Field Programable Gate Array using XSA-3S Board and prototyped blood type classification device. This research uses blood sample images as a system input. The system was built using VHSIC Hardware Description Language to describe the feed-forward propagation with a backpropagation neural network algorithm. We use three layers for the feed-forward ANN design with two hidden layers. The hidden layer designed has two neurons. In this study, the accuracy of detection obtained for four-type blood image resolutions results from 86%-92%, respectively.