基于Spartan 3S1000 FPGA的前馈人工神经网络血型分类样机

R. Priramadhi, Denny Darlis
{"title":"基于Spartan 3S1000 FPGA的前馈人工神经网络血型分类样机","authors":"R. Priramadhi, Denny Darlis","doi":"10.25124/ijait.v5i01.3220","DOIUrl":null,"url":null,"abstract":"In this research, a Feed-Forward Artificial Neural Network design was implemented on Xilinx Spartan 3S1000 Field Programable Gate Array using XSA-3S Board and prototyped blood type classification device. This research uses blood sample images as a system input. The system was built using VHSIC Hardware Description Language to describe the feed-forward propagation with a backpropagation neural network algorithm. We use three layers for the feed-forward ANN design with two hidden layers. The hidden layer designed has two neurons. In this study, the accuracy of detection obtained for four-type blood image resolutions results from 86%-92%, respectively.","PeriodicalId":301335,"journal":{"name":"IJAIT (International Journal of Applied Information Technology)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prototyping Feed-Forward Artificial Neural Network on Spartan 3S1000 FPGA for Blood Type Classification\",\"authors\":\"R. Priramadhi, Denny Darlis\",\"doi\":\"10.25124/ijait.v5i01.3220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, a Feed-Forward Artificial Neural Network design was implemented on Xilinx Spartan 3S1000 Field Programable Gate Array using XSA-3S Board and prototyped blood type classification device. This research uses blood sample images as a system input. The system was built using VHSIC Hardware Description Language to describe the feed-forward propagation with a backpropagation neural network algorithm. We use three layers for the feed-forward ANN design with two hidden layers. The hidden layer designed has two neurons. In this study, the accuracy of detection obtained for four-type blood image resolutions results from 86%-92%, respectively.\",\"PeriodicalId\":301335,\"journal\":{\"name\":\"IJAIT (International Journal of Applied Information Technology)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJAIT (International Journal of Applied Information Technology)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25124/ijait.v5i01.3220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJAIT (International Journal of Applied Information Technology)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25124/ijait.v5i01.3220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,利用XSA-3S板和原型血型分类装置,在Xilinx Spartan 3S1000现场可编程门阵列上实现前馈人工神经网络设计。本研究使用血液样本图像作为系统输入。系统采用VHSIC硬件描述语言构建,采用反向传播神经网络算法描述前馈传播过程。我们采用三层前馈神经网络设计,其中包含两个隐藏层。设计的隐藏层有两个神经元。在本研究中,四种类型血液图像分辨率的检测准确率分别为86%-92%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prototyping Feed-Forward Artificial Neural Network on Spartan 3S1000 FPGA for Blood Type Classification
In this research, a Feed-Forward Artificial Neural Network design was implemented on Xilinx Spartan 3S1000 Field Programable Gate Array using XSA-3S Board and prototyped blood type classification device. This research uses blood sample images as a system input. The system was built using VHSIC Hardware Description Language to describe the feed-forward propagation with a backpropagation neural network algorithm. We use three layers for the feed-forward ANN design with two hidden layers. The hidden layer designed has two neurons. In this study, the accuracy of detection obtained for four-type blood image resolutions results from 86%-92%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信