利用梯度增强机从视频元数据和转换参数预测视频转换时间

Md. Toufique Ahmed, Md Taufeeq Uddin
{"title":"利用梯度增强机从视频元数据和转换参数预测视频转换时间","authors":"Md. Toufique Ahmed, Md Taufeeq Uddin","doi":"10.1109/CEEICT.2016.7873085","DOIUrl":null,"url":null,"abstract":"Predictive analytics techniques can tremendously improve the performance of computing systems by optimizing energy, waiting time and throughput via predicting the execution time of scheduled jobs beforehand. As a consequence of the correlation between video conversion parameters and video conversion time, the conversion time is highly predictable from input video properties and conversion parameters. Hence, this paper proposes gradient boosting machine to predict the conversion time of videos using video metadata and conversion features with no detailed information about the applied codec. The evaluation results of the experiments conducted on benchmark Youtube video characteristics dataset showed that our model reduced the conversion time prediction error by as much as 4.03% over previously applied models. The proposed model also indicates that features about coding standard and codec allocated memory used for conversion, size, duration, bitrate and framerate of videos are crucial for conversion time prediction.","PeriodicalId":240329,"journal":{"name":"2016 3rd International Conference on Electrical Engineering and Information Communication Technology (ICEEICT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting video conversion time from video metadata and conversion parameters using gradient boosting machine\",\"authors\":\"Md. Toufique Ahmed, Md Taufeeq Uddin\",\"doi\":\"10.1109/CEEICT.2016.7873085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predictive analytics techniques can tremendously improve the performance of computing systems by optimizing energy, waiting time and throughput via predicting the execution time of scheduled jobs beforehand. As a consequence of the correlation between video conversion parameters and video conversion time, the conversion time is highly predictable from input video properties and conversion parameters. Hence, this paper proposes gradient boosting machine to predict the conversion time of videos using video metadata and conversion features with no detailed information about the applied codec. The evaluation results of the experiments conducted on benchmark Youtube video characteristics dataset showed that our model reduced the conversion time prediction error by as much as 4.03% over previously applied models. The proposed model also indicates that features about coding standard and codec allocated memory used for conversion, size, duration, bitrate and framerate of videos are crucial for conversion time prediction.\",\"PeriodicalId\":240329,\"journal\":{\"name\":\"2016 3rd International Conference on Electrical Engineering and Information Communication Technology (ICEEICT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 3rd International Conference on Electrical Engineering and Information Communication Technology (ICEEICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEEICT.2016.7873085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 3rd International Conference on Electrical Engineering and Information Communication Technology (ICEEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEEICT.2016.7873085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

预测分析技术可以通过预先预测计划作业的执行时间来优化能源、等待时间和吞吐量,从而极大地提高计算系统的性能。由于视频转换参数和视频转换时间之间存在相关性,因此从输入视频属性和转换参数可以高度预测转换时间。因此,本文提出了梯度增强机,利用视频元数据和转换特征来预测视频的转换时间,而不需要使用编解码器的详细信息。在基准Youtube视频特征数据集上进行的实验评估结果表明,我们的模型比之前应用的模型减少了高达4.03%的转换时间预测误差。该模型还表明,编码标准和编解码器分配的用于转换的内存、视频的大小、持续时间、比特率和帧率等特征对转换时间的预测至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting video conversion time from video metadata and conversion parameters using gradient boosting machine
Predictive analytics techniques can tremendously improve the performance of computing systems by optimizing energy, waiting time and throughput via predicting the execution time of scheduled jobs beforehand. As a consequence of the correlation between video conversion parameters and video conversion time, the conversion time is highly predictable from input video properties and conversion parameters. Hence, this paper proposes gradient boosting machine to predict the conversion time of videos using video metadata and conversion features with no detailed information about the applied codec. The evaluation results of the experiments conducted on benchmark Youtube video characteristics dataset showed that our model reduced the conversion time prediction error by as much as 4.03% over previously applied models. The proposed model also indicates that features about coding standard and codec allocated memory used for conversion, size, duration, bitrate and framerate of videos are crucial for conversion time prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信