异构模糊数据的建模与聚合

Arne-Jens Hempel, G. Herbst, S. Bocklisch
{"title":"异构模糊数据的建模与聚合","authors":"Arne-Jens Hempel, G. Herbst, S. Bocklisch","doi":"10.2991/eusflat.2011.72","DOIUrl":null,"url":null,"abstract":"This article proposes an individual fuzzy modelling and treatment of data allowing for the specific uncertainty of each datum. A modelling approach based on parametric fuzzy sets is being introduced which can be employed to model both data with individual uncertainties as well as abstract phenomena in a feature space (classes). An aggregation procedure is being presented which takes the individual characteristics of all learning objects into account, resulting in a fuzzy description of the same, interpretable structure. Examples are given using both synthetic and real-world data.","PeriodicalId":403191,"journal":{"name":"EUSFLAT Conf.","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modelling and aggregation of heterogeneous fuzzy data\",\"authors\":\"Arne-Jens Hempel, G. Herbst, S. Bocklisch\",\"doi\":\"10.2991/eusflat.2011.72\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes an individual fuzzy modelling and treatment of data allowing for the specific uncertainty of each datum. A modelling approach based on parametric fuzzy sets is being introduced which can be employed to model both data with individual uncertainties as well as abstract phenomena in a feature space (classes). An aggregation procedure is being presented which takes the individual characteristics of all learning objects into account, resulting in a fuzzy description of the same, interpretable structure. Examples are given using both synthetic and real-world data.\",\"PeriodicalId\":403191,\"journal\":{\"name\":\"EUSFLAT Conf.\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EUSFLAT Conf.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/eusflat.2011.72\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EUSFLAT Conf.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/eusflat.2011.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一个单独的模糊建模和处理数据,允许每个数据的具体不确定性。介绍了一种基于参数模糊集的建模方法,该方法既可以对具有个体不确定性的数据进行建模,也可以对特征空间(类)中的抽象现象进行建模。提出了一种聚合过程,该过程考虑了所有学习对象的个体特征,从而对相同的可解释结构进行模糊描述。给出了使用合成数据和实际数据的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling and aggregation of heterogeneous fuzzy data
This article proposes an individual fuzzy modelling and treatment of data allowing for the specific uncertainty of each datum. A modelling approach based on parametric fuzzy sets is being introduced which can be employed to model both data with individual uncertainties as well as abstract phenomena in a feature space (classes). An aggregation procedure is being presented which takes the individual characteristics of all learning objects into account, resulting in a fuzzy description of the same, interpretable structure. Examples are given using both synthetic and real-world data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信