一阶差分法估计功能性MRI一致性血流动力学响应函数

A. Seghouane, Adnan Shah
{"title":"一阶差分法估计功能性MRI一致性血流动力学响应函数","authors":"A. Seghouane, Adnan Shah","doi":"10.1109/ISBI.2013.6556467","DOIUrl":null,"url":null,"abstract":"Non-parametric hemodynamic response function (HRF) estimation in noisy functional Magnetic Resonance Imaging (fMRI) plays an important role when investigating the temporal dynamic of a brain region response during activations. Assuming the drift Lipschitz continuous; a new algorithm for non-parametric HRF estimation is derived in this paper. The proposed algorithm estimates the HRF by applying a first order differencing to the fMRI time series samples. It is shown that the proposed HRF estimator is √(N) consistent. Its performance is assessed using both simulated and a real fMRI data sets obtained from an event-related fMRI experiment. The application results reveal that the proposed HRF estimation method is efficient both computationally and in term of accuracy.","PeriodicalId":178011,"journal":{"name":"2013 IEEE 10th International Symposium on Biomedical Imaging","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Consistent hemodynamic response function estimation in functional MRI by first order differencing\",\"authors\":\"A. Seghouane, Adnan Shah\",\"doi\":\"10.1109/ISBI.2013.6556467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-parametric hemodynamic response function (HRF) estimation in noisy functional Magnetic Resonance Imaging (fMRI) plays an important role when investigating the temporal dynamic of a brain region response during activations. Assuming the drift Lipschitz continuous; a new algorithm for non-parametric HRF estimation is derived in this paper. The proposed algorithm estimates the HRF by applying a first order differencing to the fMRI time series samples. It is shown that the proposed HRF estimator is √(N) consistent. Its performance is assessed using both simulated and a real fMRI data sets obtained from an event-related fMRI experiment. The application results reveal that the proposed HRF estimation method is efficient both computationally and in term of accuracy.\",\"PeriodicalId\":178011,\"journal\":{\"name\":\"2013 IEEE 10th International Symposium on Biomedical Imaging\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 10th International Symposium on Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2013.6556467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 10th International Symposium on Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2013.6556467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

噪声功能磁共振成像(fMRI)中的非参数血流动力学响应函数(HRF)估计在研究激活时脑区响应的时间动态方面起着重要作用。假设漂移为Lipschitz连续;本文提出了一种新的非参数HRF估计算法。该算法通过对fMRI时间序列样本进行一阶差分来估计HRF。结果表明,所提出的HRF估计是√(N)一致的。它的性能评估使用模拟和真实的功能磁共振成像数据集从事件相关的功能磁共振成像实验获得。应用结果表明,所提出的HRF估计方法在计算和精度上都是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Consistent hemodynamic response function estimation in functional MRI by first order differencing
Non-parametric hemodynamic response function (HRF) estimation in noisy functional Magnetic Resonance Imaging (fMRI) plays an important role when investigating the temporal dynamic of a brain region response during activations. Assuming the drift Lipschitz continuous; a new algorithm for non-parametric HRF estimation is derived in this paper. The proposed algorithm estimates the HRF by applying a first order differencing to the fMRI time series samples. It is shown that the proposed HRF estimator is √(N) consistent. Its performance is assessed using both simulated and a real fMRI data sets obtained from an event-related fMRI experiment. The application results reveal that the proposed HRF estimation method is efficient both computationally and in term of accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信