{"title":"根号4的平方根,没有初始PLA","authors":"M. Ercegovac, T. Lang","doi":"10.1109/ARITH.1989.72822","DOIUrl":null,"url":null,"abstract":"A systematic derivation of a radix-4 square root algorithm using redundance in the partial residuals and the result is presented. Unlike other similar schemes, the algorithm does not use a table-lookup or programmable logic array (PLA) for the initial step. The scheme can be integrated with division. It also performs on-the-fly conversion and rounding of the result, thus eliminating a carry-propagate step to obtain the final result. The selection function uses 4 b of the result and 8 b of the estimate of the partial residual.<<ETX>>","PeriodicalId":305909,"journal":{"name":"Proceedings of 9th Symposium on Computer Arithmetic","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Radix-4 square root without initial PLA\",\"authors\":\"M. Ercegovac, T. Lang\",\"doi\":\"10.1109/ARITH.1989.72822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A systematic derivation of a radix-4 square root algorithm using redundance in the partial residuals and the result is presented. Unlike other similar schemes, the algorithm does not use a table-lookup or programmable logic array (PLA) for the initial step. The scheme can be integrated with division. It also performs on-the-fly conversion and rounding of the result, thus eliminating a carry-propagate step to obtain the final result. The selection function uses 4 b of the result and 8 b of the estimate of the partial residual.<<ETX>>\",\"PeriodicalId\":305909,\"journal\":{\"name\":\"Proceedings of 9th Symposium on Computer Arithmetic\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 9th Symposium on Computer Arithmetic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.1989.72822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 9th Symposium on Computer Arithmetic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1989.72822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A systematic derivation of a radix-4 square root algorithm using redundance in the partial residuals and the result is presented. Unlike other similar schemes, the algorithm does not use a table-lookup or programmable logic array (PLA) for the initial step. The scheme can be integrated with division. It also performs on-the-fly conversion and rounding of the result, thus eliminating a carry-propagate step to obtain the final result. The selection function uses 4 b of the result and 8 b of the estimate of the partial residual.<>