根号4的平方根,没有初始PLA

M. Ercegovac, T. Lang
{"title":"根号4的平方根,没有初始PLA","authors":"M. Ercegovac, T. Lang","doi":"10.1109/ARITH.1989.72822","DOIUrl":null,"url":null,"abstract":"A systematic derivation of a radix-4 square root algorithm using redundance in the partial residuals and the result is presented. Unlike other similar schemes, the algorithm does not use a table-lookup or programmable logic array (PLA) for the initial step. The scheme can be integrated with division. It also performs on-the-fly conversion and rounding of the result, thus eliminating a carry-propagate step to obtain the final result. The selection function uses 4 b of the result and 8 b of the estimate of the partial residual.<<ETX>>","PeriodicalId":305909,"journal":{"name":"Proceedings of 9th Symposium on Computer Arithmetic","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Radix-4 square root without initial PLA\",\"authors\":\"M. Ercegovac, T. Lang\",\"doi\":\"10.1109/ARITH.1989.72822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A systematic derivation of a radix-4 square root algorithm using redundance in the partial residuals and the result is presented. Unlike other similar schemes, the algorithm does not use a table-lookup or programmable logic array (PLA) for the initial step. The scheme can be integrated with division. It also performs on-the-fly conversion and rounding of the result, thus eliminating a carry-propagate step to obtain the final result. The selection function uses 4 b of the result and 8 b of the estimate of the partial residual.<<ETX>>\",\"PeriodicalId\":305909,\"journal\":{\"name\":\"Proceedings of 9th Symposium on Computer Arithmetic\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 9th Symposium on Computer Arithmetic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.1989.72822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 9th Symposium on Computer Arithmetic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1989.72822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

给出了一种利用部分残差冗余的根号-4平方根算法的系统推导和结果。与其他类似的方案不同,该算法在初始步骤中不使用表查找或可编程逻辑阵列(PLA)。该方案可与除法相结合。它还执行动态转换和四舍五入的结果,从而消除了携带传播步骤,以获得最终结果。选择函数使用结果的4b和部分残差估计的8b。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radix-4 square root without initial PLA
A systematic derivation of a radix-4 square root algorithm using redundance in the partial residuals and the result is presented. Unlike other similar schemes, the algorithm does not use a table-lookup or programmable logic array (PLA) for the initial step. The scheme can be integrated with division. It also performs on-the-fly conversion and rounding of the result, thus eliminating a carry-propagate step to obtain the final result. The selection function uses 4 b of the result and 8 b of the estimate of the partial residual.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信