bc -树上的Wiener奇偶索引

Yu Yang, Liang Zhou, Hongbo Liu, A. Abraham
{"title":"bc -树上的Wiener奇偶索引","authors":"Yu Yang, Liang Zhou, Hongbo Liu, A. Abraham","doi":"10.1109/WICT.2013.7113136","DOIUrl":null,"url":null,"abstract":"Corresponding to the concepts of Wiener index and distance of the vertex, in this paper, we present the concepts of Wiener odd (even) index of G as sum of the distances between all pairs of vertices of G satisfying the distances are all odd (even) and denote them Wodd(G) and Wodd(G) respectively. Based on the concepts of the two indices, we prove theoretically that Wiener odd index is not more than its even index for general BC-Trees. Closed formulae of the two indices are also provided for path BC-tree, star, k-extending star tree and caterpillar BC-tree. Meanwhile, the extreme values of Wodd(T) of n vertices BC-trees are characterized as well.","PeriodicalId":235292,"journal":{"name":"2013 Third World Congress on Information and Communication Technologies (WICT 2013)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wiener odd and even indices on BC-Trees\",\"authors\":\"Yu Yang, Liang Zhou, Hongbo Liu, A. Abraham\",\"doi\":\"10.1109/WICT.2013.7113136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Corresponding to the concepts of Wiener index and distance of the vertex, in this paper, we present the concepts of Wiener odd (even) index of G as sum of the distances between all pairs of vertices of G satisfying the distances are all odd (even) and denote them Wodd(G) and Wodd(G) respectively. Based on the concepts of the two indices, we prove theoretically that Wiener odd index is not more than its even index for general BC-Trees. Closed formulae of the two indices are also provided for path BC-tree, star, k-extending star tree and caterpillar BC-tree. Meanwhile, the extreme values of Wodd(T) of n vertices BC-trees are characterized as well.\",\"PeriodicalId\":235292,\"journal\":{\"name\":\"2013 Third World Congress on Information and Communication Technologies (WICT 2013)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Third World Congress on Information and Communication Technologies (WICT 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WICT.2013.7113136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Third World Congress on Information and Communication Technologies (WICT 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WICT.2013.7113136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与Wiener指数和顶点距离的概念相对应,本文提出了G的Wiener奇(偶)指数的概念,将其表示为满足距离均为奇(偶)的G的所有顶点对之间的距离之和,并分别表示为Wodd(G)和Wodd(G)。基于这两个指标的概念,从理论上证明了一般bc树的Wiener奇指标不大于它的偶指标。给出了路径BC-tree、星形、k扩展星形树和履带式BC-tree这两个指标的封闭公式。同时,对n个bc树顶点的Wodd(T)极值也进行了表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wiener odd and even indices on BC-Trees
Corresponding to the concepts of Wiener index and distance of the vertex, in this paper, we present the concepts of Wiener odd (even) index of G as sum of the distances between all pairs of vertices of G satisfying the distances are all odd (even) and denote them Wodd(G) and Wodd(G) respectively. Based on the concepts of the two indices, we prove theoretically that Wiener odd index is not more than its even index for general BC-Trees. Closed formulae of the two indices are also provided for path BC-tree, star, k-extending star tree and caterpillar BC-tree. Meanwhile, the extreme values of Wodd(T) of n vertices BC-trees are characterized as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信