{"title":"多输出量测量的不确定度传播","authors":"Michael Dobbert, B. Schrijver","doi":"10.51843/wsproceedings.2014.11","DOIUrl":null,"url":null,"abstract":"The ISO Guide to the Expression of Uncertainty in Measurement [1] (GUM) limits the description of the law of propagation of uncertainty to real input quantities and a single real output quantity. The GUM provides little guidance for uncertainty analysis of measurements with multiple output quantities, such as complex valued S-Parameter measurements that have both real and imaginary components. Complex measurement quantities are common in RF and microwave measurements. Likewise, measurements with multiple output quantities exist in many disciplines. Supplement 2 [2] to the GUM extends the law of propagation of uncertainty to an arbitrary number of output quantities, which is a more general solution. This paper discusses this more general solution clearly and concisely using matrix notation. It demonstrates that the GUM expressions for uncertainty propagation are a specific case of this more general solution. This method is then applied to a practical measurement uncertainty example involving complex quantities.","PeriodicalId":446344,"journal":{"name":"NCSL International Workshop & Symposium Conference Proceedings 2014","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Uncertainty Propogation for Measurements with Multiple Output Quantities\",\"authors\":\"Michael Dobbert, B. Schrijver\",\"doi\":\"10.51843/wsproceedings.2014.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ISO Guide to the Expression of Uncertainty in Measurement [1] (GUM) limits the description of the law of propagation of uncertainty to real input quantities and a single real output quantity. The GUM provides little guidance for uncertainty analysis of measurements with multiple output quantities, such as complex valued S-Parameter measurements that have both real and imaginary components. Complex measurement quantities are common in RF and microwave measurements. Likewise, measurements with multiple output quantities exist in many disciplines. Supplement 2 [2] to the GUM extends the law of propagation of uncertainty to an arbitrary number of output quantities, which is a more general solution. This paper discusses this more general solution clearly and concisely using matrix notation. It demonstrates that the GUM expressions for uncertainty propagation are a specific case of this more general solution. This method is then applied to a practical measurement uncertainty example involving complex quantities.\",\"PeriodicalId\":446344,\"journal\":{\"name\":\"NCSL International Workshop & Symposium Conference Proceedings 2014\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NCSL International Workshop & Symposium Conference Proceedings 2014\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51843/wsproceedings.2014.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NCSL International Workshop & Symposium Conference Proceedings 2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51843/wsproceedings.2014.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Uncertainty Propogation for Measurements with Multiple Output Quantities
The ISO Guide to the Expression of Uncertainty in Measurement [1] (GUM) limits the description of the law of propagation of uncertainty to real input quantities and a single real output quantity. The GUM provides little guidance for uncertainty analysis of measurements with multiple output quantities, such as complex valued S-Parameter measurements that have both real and imaginary components. Complex measurement quantities are common in RF and microwave measurements. Likewise, measurements with multiple output quantities exist in many disciplines. Supplement 2 [2] to the GUM extends the law of propagation of uncertainty to an arbitrary number of output quantities, which is a more general solution. This paper discusses this more general solution clearly and concisely using matrix notation. It demonstrates that the GUM expressions for uncertainty propagation are a specific case of this more general solution. This method is then applied to a practical measurement uncertainty example involving complex quantities.