比较传统机器学习方法对COVID-19假新闻的影响

S. Almatarneh, Pablo Gamallo, Bassam ALshargabi, Y. Al-Khassawneh, Raed Alzubi
{"title":"比较传统机器学习方法对COVID-19假新闻的影响","authors":"S. Almatarneh, Pablo Gamallo, Bassam ALshargabi, Y. Al-Khassawneh, Raed Alzubi","doi":"10.1109/acit53391.2021.9677453","DOIUrl":null,"url":null,"abstract":"This article describes some supervised classification techniques for COVID-19 fake news detection in English, where the sources of data are annotated posts from various social media platforms such as Twitter, Facebook, or Instagram. The main objective is to examine the performance of traditional machine learning techniques of COVID-19 fake news detection. In this Situation, models trained with Support Vector Machine and Naïve Bayes algorithms outperformed all other strategies.","PeriodicalId":302120,"journal":{"name":"2021 22nd International Arab Conference on Information Technology (ACIT)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Comparing Traditional Machine Learning Methods for COVID-19 Fake News\",\"authors\":\"S. Almatarneh, Pablo Gamallo, Bassam ALshargabi, Y. Al-Khassawneh, Raed Alzubi\",\"doi\":\"10.1109/acit53391.2021.9677453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article describes some supervised classification techniques for COVID-19 fake news detection in English, where the sources of data are annotated posts from various social media platforms such as Twitter, Facebook, or Instagram. The main objective is to examine the performance of traditional machine learning techniques of COVID-19 fake news detection. In this Situation, models trained with Support Vector Machine and Naïve Bayes algorithms outperformed all other strategies.\",\"PeriodicalId\":302120,\"journal\":{\"name\":\"2021 22nd International Arab Conference on Information Technology (ACIT)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 22nd International Arab Conference on Information Technology (ACIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/acit53391.2021.9677453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 22nd International Arab Conference on Information Technology (ACIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/acit53391.2021.9677453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文介绍了一些用于COVID-19假新闻检测的监督分类技术,其中数据来源是来自各种社交媒体平台(如Twitter, Facebook或Instagram)的注释帖子。主要目的是检验传统机器学习技术在COVID-19假新闻检测中的性能。在这种情况下,使用支持向量机和Naïve贝叶斯算法训练的模型优于所有其他策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing Traditional Machine Learning Methods for COVID-19 Fake News
This article describes some supervised classification techniques for COVID-19 fake news detection in English, where the sources of data are annotated posts from various social media platforms such as Twitter, Facebook, or Instagram. The main objective is to examine the performance of traditional machine learning techniques of COVID-19 fake news detection. In this Situation, models trained with Support Vector Machine and Naïve Bayes algorithms outperformed all other strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信