{"title":"基于交叉验证的阿拉伯语口语数字识别HMM参数估计","authors":"N. Hammami, M. Bedda, N. Farah","doi":"10.1109/CCCA.2011.6031396","DOIUrl":null,"url":null,"abstract":"This paper presents automatic recognition of the Spoken Arabic Digits recognition by means of preselected parameters for the Hidden Markov Models using the cross validation method. The experimental results give the best result with the obtained parameters, achieve 94.09% correct digit recognition dataset and confirm the promising capabilities of the proposed approach compared to the previous work that uses the same dataset.","PeriodicalId":259067,"journal":{"name":"2011 International Conference on Communications, Computing and Control Applications (CCCA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"HMM parameters estimation based on cross-validation for Spoken Arabic Digits recognition\",\"authors\":\"N. Hammami, M. Bedda, N. Farah\",\"doi\":\"10.1109/CCCA.2011.6031396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents automatic recognition of the Spoken Arabic Digits recognition by means of preselected parameters for the Hidden Markov Models using the cross validation method. The experimental results give the best result with the obtained parameters, achieve 94.09% correct digit recognition dataset and confirm the promising capabilities of the proposed approach compared to the previous work that uses the same dataset.\",\"PeriodicalId\":259067,\"journal\":{\"name\":\"2011 International Conference on Communications, Computing and Control Applications (CCCA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Communications, Computing and Control Applications (CCCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCCA.2011.6031396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Communications, Computing and Control Applications (CCCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCCA.2011.6031396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
HMM parameters estimation based on cross-validation for Spoken Arabic Digits recognition
This paper presents automatic recognition of the Spoken Arabic Digits recognition by means of preselected parameters for the Hidden Markov Models using the cross validation method. The experimental results give the best result with the obtained parameters, achieve 94.09% correct digit recognition dataset and confirm the promising capabilities of the proposed approach compared to the previous work that uses the same dataset.