基于交叉验证的阿拉伯语口语数字识别HMM参数估计

N. Hammami, M. Bedda, N. Farah
{"title":"基于交叉验证的阿拉伯语口语数字识别HMM参数估计","authors":"N. Hammami, M. Bedda, N. Farah","doi":"10.1109/CCCA.2011.6031396","DOIUrl":null,"url":null,"abstract":"This paper presents automatic recognition of the Spoken Arabic Digits recognition by means of preselected parameters for the Hidden Markov Models using the cross validation method. The experimental results give the best result with the obtained parameters, achieve 94.09% correct digit recognition dataset and confirm the promising capabilities of the proposed approach compared to the previous work that uses the same dataset.","PeriodicalId":259067,"journal":{"name":"2011 International Conference on Communications, Computing and Control Applications (CCCA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"HMM parameters estimation based on cross-validation for Spoken Arabic Digits recognition\",\"authors\":\"N. Hammami, M. Bedda, N. Farah\",\"doi\":\"10.1109/CCCA.2011.6031396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents automatic recognition of the Spoken Arabic Digits recognition by means of preselected parameters for the Hidden Markov Models using the cross validation method. The experimental results give the best result with the obtained parameters, achieve 94.09% correct digit recognition dataset and confirm the promising capabilities of the proposed approach compared to the previous work that uses the same dataset.\",\"PeriodicalId\":259067,\"journal\":{\"name\":\"2011 International Conference on Communications, Computing and Control Applications (CCCA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Communications, Computing and Control Applications (CCCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCCA.2011.6031396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Communications, Computing and Control Applications (CCCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCCA.2011.6031396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文采用交叉验证方法对隐马尔可夫模型进行参数预选,实现了阿拉伯语口语数字的自动识别。实验结果表明,所得到的数字识别数据集的识别率达到了94.09%,与以往使用相同数据集的方法相比,所提出的方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HMM parameters estimation based on cross-validation for Spoken Arabic Digits recognition
This paper presents automatic recognition of the Spoken Arabic Digits recognition by means of preselected parameters for the Hidden Markov Models using the cross validation method. The experimental results give the best result with the obtained parameters, achieve 94.09% correct digit recognition dataset and confirm the promising capabilities of the proposed approach compared to the previous work that uses the same dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信