十米无线电波脉冲观测对1.3毫米波长VLBI观测到的SgrA*的时变射电辐射的解释

{"title":"十米无线电波脉冲观测对1.3毫米波长VLBI观测到的SgrA*的时变射电辐射的解释","authors":"","doi":"10.33140/eesrr.05.04.05","DOIUrl":null,"url":null,"abstract":"In 2011, by 1.3 mm wavelength VLBI radio wave observations of the SgrA*, Fish, V. L. et al showed that the emissions tightly related to the formation of a black hole shadow have a remarkably large time-varying feature within a region of less than 50 μas. The present paper suggests that the origin of the time variation in the observed emission is due to effects of the orbital motion of the existing super-massive black hole binary orbiting at SgrA* with a period of 2150±2.5 s. This suggestion is based on observations of decameter radio wave pulses from SgrA*. We show a good correlation between the time variation in the coherent flux density of the VLBI results and the time variation model of estimated emission intensities based on the periodic motion of the super-massive black hole binary by applying parameters deduced from the decameter radio wave pulse observation model (DRWP-Model). With further confirmation by Fourier analyses of the potential periodicity of the VLBI data that show the same periods of DRWP Model, we conclude that the time variation detected by the 1.3 mm wavelength radio wave VLBI is evidence of an existing super-massive black hole at Sgr A*.","PeriodicalId":298809,"journal":{"name":"Earth & Environmental Science Research & Reviews","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpretation of Time-Varying Radio Emissions of SgrA* Observed by 1.3 Millimeter-Wavelength VLBI with Black Hole Binary Concluded by Decameter Radio Wave Pulse Observations\",\"authors\":\"\",\"doi\":\"10.33140/eesrr.05.04.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2011, by 1.3 mm wavelength VLBI radio wave observations of the SgrA*, Fish, V. L. et al showed that the emissions tightly related to the formation of a black hole shadow have a remarkably large time-varying feature within a region of less than 50 μas. The present paper suggests that the origin of the time variation in the observed emission is due to effects of the orbital motion of the existing super-massive black hole binary orbiting at SgrA* with a period of 2150±2.5 s. This suggestion is based on observations of decameter radio wave pulses from SgrA*. We show a good correlation between the time variation in the coherent flux density of the VLBI results and the time variation model of estimated emission intensities based on the periodic motion of the super-massive black hole binary by applying parameters deduced from the decameter radio wave pulse observation model (DRWP-Model). With further confirmation by Fourier analyses of the potential periodicity of the VLBI data that show the same periods of DRWP Model, we conclude that the time variation detected by the 1.3 mm wavelength radio wave VLBI is evidence of an existing super-massive black hole at Sgr A*.\",\"PeriodicalId\":298809,\"journal\":{\"name\":\"Earth & Environmental Science Research & Reviews\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth & Environmental Science Research & Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33140/eesrr.05.04.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth & Environmental Science Research & Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33140/eesrr.05.04.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

2011年,Fish, V. l等人通过对SgrA*的1.3 mm波长VLBI无线电波观测表明,与黑洞阴影形成密切相关的发射在小于50 μas的区域内具有非常大的时变特征。本文认为,观测到的发射时间变化的起源是由于现有的超大质量黑洞双星在SgrA*上运行的轨道运动的影响,周期为2150±2.5 s。这个建议是基于对SgrA*的十米无线电波脉冲的观测。我们利用十米无线电波脉冲观测模型(DRWP-Model)推导出的参数,证明了VLBI结果相干通量密度的时间变化与基于超大质量黑洞双星周期运动的估计发射强度的时间变化模型之间具有良好的相关性。通过对显示DRWP模型相同周期的VLBI数据的潜在周期性的傅里叶分析进一步证实,我们得出结论,1.3 mm波长的无线电波VLBI探测到的时间变化是Sgr A*存在超大质量黑洞的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpretation of Time-Varying Radio Emissions of SgrA* Observed by 1.3 Millimeter-Wavelength VLBI with Black Hole Binary Concluded by Decameter Radio Wave Pulse Observations
In 2011, by 1.3 mm wavelength VLBI radio wave observations of the SgrA*, Fish, V. L. et al showed that the emissions tightly related to the formation of a black hole shadow have a remarkably large time-varying feature within a region of less than 50 μas. The present paper suggests that the origin of the time variation in the observed emission is due to effects of the orbital motion of the existing super-massive black hole binary orbiting at SgrA* with a period of 2150±2.5 s. This suggestion is based on observations of decameter radio wave pulses from SgrA*. We show a good correlation between the time variation in the coherent flux density of the VLBI results and the time variation model of estimated emission intensities based on the periodic motion of the super-massive black hole binary by applying parameters deduced from the decameter radio wave pulse observation model (DRWP-Model). With further confirmation by Fourier analyses of the potential periodicity of the VLBI data that show the same periods of DRWP Model, we conclude that the time variation detected by the 1.3 mm wavelength radio wave VLBI is evidence of an existing super-massive black hole at Sgr A*.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信