{"title":"ETANet:一种高效的三注意显著目标检测网络","authors":"Ngo Thien Thu, E. Huh, C. Hong","doi":"10.1109/ICOIN56518.2023.10048982","DOIUrl":null,"url":null,"abstract":"Salient object detection (SOD) is a critical vision task in ubiquitous applications. Most existing methods have complicated structure and large number of parameters, which prevents these methods to deploy on practical applications. In order to solve this problem, we propose an efficient triple attention network (ETANet), which consists of multiple attention mechanisms. In detail, we design a crossed spatial-channel attention mechanism to extract useful low-level features, an efficient branch to perceive high-level features based on self-attention through multi-scale receptive field. In addition, we propose a dilated criss-cross fusion mechanism to fuse low-level and high-level features in an efficient way. The experiment results show that our architecture achieved competitive performance and can trade off between the accuracy and efficiency compared to other heavy-weight methods.","PeriodicalId":285763,"journal":{"name":"2023 International Conference on Information Networking (ICOIN)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ETANet: An Efficient Triple-Attention Network for Salient Object Detection\",\"authors\":\"Ngo Thien Thu, E. Huh, C. Hong\",\"doi\":\"10.1109/ICOIN56518.2023.10048982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Salient object detection (SOD) is a critical vision task in ubiquitous applications. Most existing methods have complicated structure and large number of parameters, which prevents these methods to deploy on practical applications. In order to solve this problem, we propose an efficient triple attention network (ETANet), which consists of multiple attention mechanisms. In detail, we design a crossed spatial-channel attention mechanism to extract useful low-level features, an efficient branch to perceive high-level features based on self-attention through multi-scale receptive field. In addition, we propose a dilated criss-cross fusion mechanism to fuse low-level and high-level features in an efficient way. The experiment results show that our architecture achieved competitive performance and can trade off between the accuracy and efficiency compared to other heavy-weight methods.\",\"PeriodicalId\":285763,\"journal\":{\"name\":\"2023 International Conference on Information Networking (ICOIN)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Information Networking (ICOIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOIN56518.2023.10048982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Information Networking (ICOIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIN56518.2023.10048982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ETANet: An Efficient Triple-Attention Network for Salient Object Detection
Salient object detection (SOD) is a critical vision task in ubiquitous applications. Most existing methods have complicated structure and large number of parameters, which prevents these methods to deploy on practical applications. In order to solve this problem, we propose an efficient triple attention network (ETANet), which consists of multiple attention mechanisms. In detail, we design a crossed spatial-channel attention mechanism to extract useful low-level features, an efficient branch to perceive high-level features based on self-attention through multi-scale receptive field. In addition, we propose a dilated criss-cross fusion mechanism to fuse low-level and high-level features in an efficient way. The experiment results show that our architecture achieved competitive performance and can trade off between the accuracy and efficiency compared to other heavy-weight methods.