ETANet:一种高效的三注意显著目标检测网络

Ngo Thien Thu, E. Huh, C. Hong
{"title":"ETANet:一种高效的三注意显著目标检测网络","authors":"Ngo Thien Thu, E. Huh, C. Hong","doi":"10.1109/ICOIN56518.2023.10048982","DOIUrl":null,"url":null,"abstract":"Salient object detection (SOD) is a critical vision task in ubiquitous applications. Most existing methods have complicated structure and large number of parameters, which prevents these methods to deploy on practical applications. In order to solve this problem, we propose an efficient triple attention network (ETANet), which consists of multiple attention mechanisms. In detail, we design a crossed spatial-channel attention mechanism to extract useful low-level features, an efficient branch to perceive high-level features based on self-attention through multi-scale receptive field. In addition, we propose a dilated criss-cross fusion mechanism to fuse low-level and high-level features in an efficient way. The experiment results show that our architecture achieved competitive performance and can trade off between the accuracy and efficiency compared to other heavy-weight methods.","PeriodicalId":285763,"journal":{"name":"2023 International Conference on Information Networking (ICOIN)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ETANet: An Efficient Triple-Attention Network for Salient Object Detection\",\"authors\":\"Ngo Thien Thu, E. Huh, C. Hong\",\"doi\":\"10.1109/ICOIN56518.2023.10048982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Salient object detection (SOD) is a critical vision task in ubiquitous applications. Most existing methods have complicated structure and large number of parameters, which prevents these methods to deploy on practical applications. In order to solve this problem, we propose an efficient triple attention network (ETANet), which consists of multiple attention mechanisms. In detail, we design a crossed spatial-channel attention mechanism to extract useful low-level features, an efficient branch to perceive high-level features based on self-attention through multi-scale receptive field. In addition, we propose a dilated criss-cross fusion mechanism to fuse low-level and high-level features in an efficient way. The experiment results show that our architecture achieved competitive performance and can trade off between the accuracy and efficiency compared to other heavy-weight methods.\",\"PeriodicalId\":285763,\"journal\":{\"name\":\"2023 International Conference on Information Networking (ICOIN)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Information Networking (ICOIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOIN56518.2023.10048982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Information Networking (ICOIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIN56518.2023.10048982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

显著目标检测(SOD)是一项重要的视觉任务。现有的方法大多结构复杂,参数多,不利于实际应用。为了解决这一问题,我们提出了一种高效的三重注意网络(ETANet),它由多种注意机制组成。我们设计了一种跨空间通道的注意机制来提取有用的低层次特征,并通过多尺度感受野设计了一种基于自注意的高效分支来感知高层次特征。此外,我们提出了一种扩展的纵横交叉融合机制,以有效地融合低级和高级特征。实验结果表明,与其他重量级方法相比,我们的架构取得了具有竞争力的性能,可以在精度和效率之间进行权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ETANet: An Efficient Triple-Attention Network for Salient Object Detection
Salient object detection (SOD) is a critical vision task in ubiquitous applications. Most existing methods have complicated structure and large number of parameters, which prevents these methods to deploy on practical applications. In order to solve this problem, we propose an efficient triple attention network (ETANet), which consists of multiple attention mechanisms. In detail, we design a crossed spatial-channel attention mechanism to extract useful low-level features, an efficient branch to perceive high-level features based on self-attention through multi-scale receptive field. In addition, we propose a dilated criss-cross fusion mechanism to fuse low-level and high-level features in an efficient way. The experiment results show that our architecture achieved competitive performance and can trade off between the accuracy and efficiency compared to other heavy-weight methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信