Hidenori Yamada, Toshishige Yamada, A. Lohn, N. Kobayashi
{"title":"光照下InP纳米线中库仑阶梯的可逆抑制","authors":"Hidenori Yamada, Toshishige Yamada, A. Lohn, N. Kobayashi","doi":"10.1109/NMDC.2010.5652579","DOIUrl":null,"url":null,"abstract":"Detailed electron transport analysis is performed for an ensemble of conical indium phosphide nanowires bridging two hydrogenated n+-silicon electrodes. The current-voltage (I-V) characteristics exhibit a staircase in dark with a period of ~ 1 V at room temperature. The staircase is found to disappear under light illumination. This observation can be explained by assuming the presence of a tiny island within contributing nanowires. Electrons tunnel in and out of the island, resulting in the Coulomb staircase I-V. Applying light illumination raises the electron quasi-Fermi level and the tunneling barriers are buried, causing the Coulomb staircase to disappear.","PeriodicalId":423557,"journal":{"name":"2010 IEEE Nanotechnology Materials and Devices Conference","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reversible suppression of Coulomb staircase in InP nanowires with light illumination\",\"authors\":\"Hidenori Yamada, Toshishige Yamada, A. Lohn, N. Kobayashi\",\"doi\":\"10.1109/NMDC.2010.5652579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detailed electron transport analysis is performed for an ensemble of conical indium phosphide nanowires bridging two hydrogenated n+-silicon electrodes. The current-voltage (I-V) characteristics exhibit a staircase in dark with a period of ~ 1 V at room temperature. The staircase is found to disappear under light illumination. This observation can be explained by assuming the presence of a tiny island within contributing nanowires. Electrons tunnel in and out of the island, resulting in the Coulomb staircase I-V. Applying light illumination raises the electron quasi-Fermi level and the tunneling barriers are buried, causing the Coulomb staircase to disappear.\",\"PeriodicalId\":423557,\"journal\":{\"name\":\"2010 IEEE Nanotechnology Materials and Devices Conference\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Nanotechnology Materials and Devices Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NMDC.2010.5652579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Nanotechnology Materials and Devices Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NMDC.2010.5652579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reversible suppression of Coulomb staircase in InP nanowires with light illumination
Detailed electron transport analysis is performed for an ensemble of conical indium phosphide nanowires bridging two hydrogenated n+-silicon electrodes. The current-voltage (I-V) characteristics exhibit a staircase in dark with a period of ~ 1 V at room temperature. The staircase is found to disappear under light illumination. This observation can be explained by assuming the presence of a tiny island within contributing nanowires. Electrons tunnel in and out of the island, resulting in the Coulomb staircase I-V. Applying light illumination raises the electron quasi-Fermi level and the tunneling barriers are buried, causing the Coulomb staircase to disappear.