一种测试数据的降维方法

M. Denguir, S. Sattler
{"title":"一种测试数据的降维方法","authors":"M. Denguir, S. Sattler","doi":"10.1109/IMS3TW.2017.7995209","DOIUrl":null,"url":null,"abstract":"When performing a separation of test results, coping with enormous high-dimensional data sets is necessary but problematic. The input of high-dimensional data, in which not a few elements are irrelevant or less relevant than others, usually lead to inadequate results. It is therefore useful to consult methods, which classify the individual dimensions of the data volumes according to their relevance. In this paper, we present the Principal Component Analysis (PCA) and a Self-developed non-linear Data Analysis (SEDA), used on a complete data collection, as classification methods. Both analyzes are clarified using the same example.","PeriodicalId":115078,"journal":{"name":"2017 International Mixed Signals Testing Workshop (IMSTW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dimensionality-reduction method for test data\",\"authors\":\"M. Denguir, S. Sattler\",\"doi\":\"10.1109/IMS3TW.2017.7995209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When performing a separation of test results, coping with enormous high-dimensional data sets is necessary but problematic. The input of high-dimensional data, in which not a few elements are irrelevant or less relevant than others, usually lead to inadequate results. It is therefore useful to consult methods, which classify the individual dimensions of the data volumes according to their relevance. In this paper, we present the Principal Component Analysis (PCA) and a Self-developed non-linear Data Analysis (SEDA), used on a complete data collection, as classification methods. Both analyzes are clarified using the same example.\",\"PeriodicalId\":115078,\"journal\":{\"name\":\"2017 International Mixed Signals Testing Workshop (IMSTW)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Mixed Signals Testing Workshop (IMSTW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMS3TW.2017.7995209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Mixed Signals Testing Workshop (IMSTW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMS3TW.2017.7995209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在执行测试结果分离时,处理大量高维数据集是必要的,但存在问题。高维数据的输入,其中不少元素是不相关的或相关性较低的,通常会导致不充分的结果。因此,参考根据相关性对数据量的各个维度进行分类的方法是有用的。在本文中,我们提出了主成分分析(PCA)和自行开发的非线性数据分析(SEDA),用于一个完整的数据收集,作为分类方法。这两种分析都用同一个例子来说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A dimensionality-reduction method for test data
When performing a separation of test results, coping with enormous high-dimensional data sets is necessary but problematic. The input of high-dimensional data, in which not a few elements are irrelevant or less relevant than others, usually lead to inadequate results. It is therefore useful to consult methods, which classify the individual dimensions of the data volumes according to their relevance. In this paper, we present the Principal Component Analysis (PCA) and a Self-developed non-linear Data Analysis (SEDA), used on a complete data collection, as classification methods. Both analyzes are clarified using the same example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信