用于快速通用目标跟踪的彩色投影

Yue Du, J. Crisman
{"title":"用于快速通用目标跟踪的彩色投影","authors":"Yue Du, J. Crisman","doi":"10.1109/IROS.1995.525821","DOIUrl":null,"url":null,"abstract":"We present a piecewise linear projection of the 3D color space that greatly reduces the computations required for using color information for robot vision tasks which we call categorical color. This 24-bit to 6-bit projection is inspired by the way humans name colors. This projection is developed to provide generic target tracking in real-time. A generic target in our system is defined by a user selecting a distinctive object in the window of a color image. The system has no a priori models of object shapes or colors. Therefore, the generic target tracking must perform robustly, in real time, using only the initial example appearance of the target object. To evaluate the performance of our piecewise linear projection on the task of generic target tracking, we compare similar RGB, intensity, and categorical color algorithms. Rather than simply observing the located target, we have developed a quantitative method for evaluating generic target tracking algorithms. By using this procedure, we show that categorical color is a better feature for generic tracking than RGB and gray-level.","PeriodicalId":124483,"journal":{"name":"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A color projection for fast generic target tracking\",\"authors\":\"Yue Du, J. Crisman\",\"doi\":\"10.1109/IROS.1995.525821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a piecewise linear projection of the 3D color space that greatly reduces the computations required for using color information for robot vision tasks which we call categorical color. This 24-bit to 6-bit projection is inspired by the way humans name colors. This projection is developed to provide generic target tracking in real-time. A generic target in our system is defined by a user selecting a distinctive object in the window of a color image. The system has no a priori models of object shapes or colors. Therefore, the generic target tracking must perform robustly, in real time, using only the initial example appearance of the target object. To evaluate the performance of our piecewise linear projection on the task of generic target tracking, we compare similar RGB, intensity, and categorical color algorithms. Rather than simply observing the located target, we have developed a quantitative method for evaluating generic target tracking algorithms. By using this procedure, we show that categorical color is a better feature for generic tracking than RGB and gray-level.\",\"PeriodicalId\":124483,\"journal\":{\"name\":\"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.1995.525821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1995.525821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

我们提出了三维颜色空间的分段线性投影,大大减少了机器人视觉任务中使用颜色信息所需的计算量,我们称之为分类颜色。这种24位到6位投影的灵感来自于人类命名颜色的方式。这种投影是为了提供实时的通用目标跟踪而开发的。在我们的系统中,一般目标是由用户在彩色图像的窗口中选择一个独特的对象来定义的。该系统没有物体形状或颜色的先验模型。因此,通用目标跟踪必须健壮地实时执行,仅使用目标对象的初始示例外观。为了评估我们的分段线性投影在通用目标跟踪任务上的性能,我们比较了相似的RGB、强度和分类颜色算法。而不是简单地观察定位目标,我们已经开发了一种定量的方法来评估通用目标跟踪算法。通过这个过程,我们证明了分类颜色是一个比RGB和灰度更好的通用跟踪特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A color projection for fast generic target tracking
We present a piecewise linear projection of the 3D color space that greatly reduces the computations required for using color information for robot vision tasks which we call categorical color. This 24-bit to 6-bit projection is inspired by the way humans name colors. This projection is developed to provide generic target tracking in real-time. A generic target in our system is defined by a user selecting a distinctive object in the window of a color image. The system has no a priori models of object shapes or colors. Therefore, the generic target tracking must perform robustly, in real time, using only the initial example appearance of the target object. To evaluate the performance of our piecewise linear projection on the task of generic target tracking, we compare similar RGB, intensity, and categorical color algorithms. Rather than simply observing the located target, we have developed a quantitative method for evaluating generic target tracking algorithms. By using this procedure, we show that categorical color is a better feature for generic tracking than RGB and gray-level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信