{"title":"试点推荐系统,让学生在反思中间接相互帮助,培养归属感","authors":"Aileen Benedict, Erfan Al-Hossami, Mohsen Dorodchi, Alexandria Benedict, Sandra Wiktor","doi":"10.1145/3506860.3506903","DOIUrl":null,"url":null,"abstract":"Without a sense of belonging, students may become disheartened and give up when faced with new challenges. Moreover, with the sudden growth of remote learning due to COVID-19, it may be even more difficult for students to feel connected to the course and peers in isolation. Therefore, we propose a recommendation system to build connections between students while recommending solutions to challenges. This pilot system utilizes students’ reflections from previous semesters, asking about learning challenges and potential solutions. It then generates sentence embeddings and calculates cosine similarities between the challenges of current and prior students. The possible solutions given by previous students are then recommended to present students with similar challenges. Self-reflection encourages students to think deeply about their learning experiences and benefit both learners and instructors. This system has the potential to allow reflections also to help future learners. By demonstrating that previous students encountered and overcame similar challenges, we could help improve students’ sense of belonging. We then perform user studies to evaluate this system’s potential and find that participants rated 70% of the recommended solutions as useful. Our findings suggest an increase in students’ sense of membership and acceptance, and a decrease in the desire to withdraw.","PeriodicalId":185465,"journal":{"name":"LAK22: 12th International Learning Analytics and Knowledge Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pilot Recommender System Enabling Students to Indirectly Help Each Other and Foster Belonging Through Reflections\",\"authors\":\"Aileen Benedict, Erfan Al-Hossami, Mohsen Dorodchi, Alexandria Benedict, Sandra Wiktor\",\"doi\":\"10.1145/3506860.3506903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Without a sense of belonging, students may become disheartened and give up when faced with new challenges. Moreover, with the sudden growth of remote learning due to COVID-19, it may be even more difficult for students to feel connected to the course and peers in isolation. Therefore, we propose a recommendation system to build connections between students while recommending solutions to challenges. This pilot system utilizes students’ reflections from previous semesters, asking about learning challenges and potential solutions. It then generates sentence embeddings and calculates cosine similarities between the challenges of current and prior students. The possible solutions given by previous students are then recommended to present students with similar challenges. Self-reflection encourages students to think deeply about their learning experiences and benefit both learners and instructors. This system has the potential to allow reflections also to help future learners. By demonstrating that previous students encountered and overcame similar challenges, we could help improve students’ sense of belonging. We then perform user studies to evaluate this system’s potential and find that participants rated 70% of the recommended solutions as useful. Our findings suggest an increase in students’ sense of membership and acceptance, and a decrease in the desire to withdraw.\",\"PeriodicalId\":185465,\"journal\":{\"name\":\"LAK22: 12th International Learning Analytics and Knowledge Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"LAK22: 12th International Learning Analytics and Knowledge Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3506860.3506903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"LAK22: 12th International Learning Analytics and Knowledge Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3506860.3506903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pilot Recommender System Enabling Students to Indirectly Help Each Other and Foster Belonging Through Reflections
Without a sense of belonging, students may become disheartened and give up when faced with new challenges. Moreover, with the sudden growth of remote learning due to COVID-19, it may be even more difficult for students to feel connected to the course and peers in isolation. Therefore, we propose a recommendation system to build connections between students while recommending solutions to challenges. This pilot system utilizes students’ reflections from previous semesters, asking about learning challenges and potential solutions. It then generates sentence embeddings and calculates cosine similarities between the challenges of current and prior students. The possible solutions given by previous students are then recommended to present students with similar challenges. Self-reflection encourages students to think deeply about their learning experiences and benefit both learners and instructors. This system has the potential to allow reflections also to help future learners. By demonstrating that previous students encountered and overcame similar challenges, we could help improve students’ sense of belonging. We then perform user studies to evaluate this system’s potential and find that participants rated 70% of the recommended solutions as useful. Our findings suggest an increase in students’ sense of membership and acceptance, and a decrease in the desire to withdraw.