改进差分进化全局优化

Jiahua Xie, Jie Yang
{"title":"改进差分进化全局优化","authors":"Jiahua Xie, Jie Yang","doi":"10.1109/ICIME.2010.5478016","DOIUrl":null,"url":null,"abstract":"Differential Evolution (DE) is a recently proposed population based evolutionary technique, which attracts much attention for its simple concept, easy implementation and robustness. In order to enhance the performance of classical DE, this paper presents an improved DE algorithm for global optimization. The proposed approach IDE employs a mutation operator based on an opposition-based learning concept. To verify the performance of IDE, we test it on 13 well-known benchmark functions. The simulation results show that the proposed approach outperforms the compared algorithm on most of test problems.","PeriodicalId":382705,"journal":{"name":"2010 2nd IEEE International Conference on Information Management and Engineering","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improved differential evolution for global optimization\",\"authors\":\"Jiahua Xie, Jie Yang\",\"doi\":\"10.1109/ICIME.2010.5478016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Differential Evolution (DE) is a recently proposed population based evolutionary technique, which attracts much attention for its simple concept, easy implementation and robustness. In order to enhance the performance of classical DE, this paper presents an improved DE algorithm for global optimization. The proposed approach IDE employs a mutation operator based on an opposition-based learning concept. To verify the performance of IDE, we test it on 13 well-known benchmark functions. The simulation results show that the proposed approach outperforms the compared algorithm on most of test problems.\",\"PeriodicalId\":382705,\"journal\":{\"name\":\"2010 2nd IEEE International Conference on Information Management and Engineering\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd IEEE International Conference on Information Management and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIME.2010.5478016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd IEEE International Conference on Information Management and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIME.2010.5478016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

差分进化(DE)是近年来提出的一种基于种群的进化技术,以其概念简单、易于实现和鲁棒性而备受关注。为了提高经典DE算法的性能,本文提出了一种改进的DE全局优化算法。该方法采用基于对立学习概念的变异算子。为了验证IDE的性能,我们在13个著名的基准函数上进行了测试。仿真结果表明,该方法在大多数测试问题上都优于比较算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved differential evolution for global optimization
Differential Evolution (DE) is a recently proposed population based evolutionary technique, which attracts much attention for its simple concept, easy implementation and robustness. In order to enhance the performance of classical DE, this paper presents an improved DE algorithm for global optimization. The proposed approach IDE employs a mutation operator based on an opposition-based learning concept. To verify the performance of IDE, we test it on 13 well-known benchmark functions. The simulation results show that the proposed approach outperforms the compared algorithm on most of test problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信