基于计算-内存感知技术的内存中管道计算宏

L. Chang, Pan Zhao, Jun Zhou
{"title":"基于计算-内存感知技术的内存中管道计算宏","authors":"L. Chang, Pan Zhao, Jun Zhou","doi":"10.1109/APCCAS55924.2022.10090333","DOIUrl":null,"url":null,"abstract":"Computing-in-Memory (CIM) architecture is suitable for artificial intelligent accelerators, where frequent data movements are required between computation and memory units. CIM-based processing engine reduces redundant data interaction by integrated computation in/with memory and has become a promising candidate to alternate traditional multiply-and-accumulator (MAC). However, most of the previous CIM macros only considered computation without concern for the memory attribute, leading to a low memory computing ratio. This paper presents an SRAM-based digital CIM macro supporting pipeline mode and computation-memory aware technique to improve the ratio of memory-computation. We develop a novel weight driver with fine-grained ping-pong operation, avoiding the computation halt caused by weight updating. Based on our evaluation, the peak energy efficiency is 19.78TOPS/W at 22 nm technology node, 8-bit width, and 50% sparsity of input feature map.","PeriodicalId":243739,"journal":{"name":"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pipelined Computing-in-Memory Macro with Computation-Memory Aware Technique\",\"authors\":\"L. Chang, Pan Zhao, Jun Zhou\",\"doi\":\"10.1109/APCCAS55924.2022.10090333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computing-in-Memory (CIM) architecture is suitable for artificial intelligent accelerators, where frequent data movements are required between computation and memory units. CIM-based processing engine reduces redundant data interaction by integrated computation in/with memory and has become a promising candidate to alternate traditional multiply-and-accumulator (MAC). However, most of the previous CIM macros only considered computation without concern for the memory attribute, leading to a low memory computing ratio. This paper presents an SRAM-based digital CIM macro supporting pipeline mode and computation-memory aware technique to improve the ratio of memory-computation. We develop a novel weight driver with fine-grained ping-pong operation, avoiding the computation halt caused by weight updating. Based on our evaluation, the peak energy efficiency is 19.78TOPS/W at 22 nm technology node, 8-bit width, and 50% sparsity of input feature map.\",\"PeriodicalId\":243739,\"journal\":{\"name\":\"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCCAS55924.2022.10090333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS55924.2022.10090333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

内存计算(CIM)架构适用于需要在计算和存储单元之间频繁移动数据的人工智能加速器。基于cim的处理引擎通过集成内存计算减少冗余数据交互,已成为替代传统乘法累加器(MAC)的一种很有前途的选择。但是,以前的大多数CIM宏只考虑计算而不考虑内存属性,导致内存计算比率较低。本文提出了一种基于sram的数字CIM宏,支持流水线模式和计算-内存感知技术,以提高存储-计算比。我们开发了一种采用细粒度乒乓操作的权重驱动,避免了权重更新带来的计算中断。基于我们的评估,在22 nm技术节点,8位宽度,50%稀疏度的输入特征映射下,峰值能量效率为19.78TOPS/W。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pipelined Computing-in-Memory Macro with Computation-Memory Aware Technique
Computing-in-Memory (CIM) architecture is suitable for artificial intelligent accelerators, where frequent data movements are required between computation and memory units. CIM-based processing engine reduces redundant data interaction by integrated computation in/with memory and has become a promising candidate to alternate traditional multiply-and-accumulator (MAC). However, most of the previous CIM macros only considered computation without concern for the memory attribute, leading to a low memory computing ratio. This paper presents an SRAM-based digital CIM macro supporting pipeline mode and computation-memory aware technique to improve the ratio of memory-computation. We develop a novel weight driver with fine-grained ping-pong operation, avoiding the computation halt caused by weight updating. Based on our evaluation, the peak energy efficiency is 19.78TOPS/W at 22 nm technology node, 8-bit width, and 50% sparsity of input feature map.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信