缺铁性贫血和糖尿病

Çiğdem Bozkır
{"title":"缺铁性贫血和糖尿病","authors":"Çiğdem Bozkır","doi":"10.31031/iod.2019.03.000557","DOIUrl":null,"url":null,"abstract":"Iron is necessary for various metabolic processes, including oxygen transport and storage, redox reactions, cell signaling and microbial defense. Absorption, transport and storage of iron are carefully regulated, presumably to avert potential toxic effects of free iron [1,2]. Both iron overload and iron deficiency can be detrimental to health, so iron homeostasis is essential. Although many factors that take part in iron homeostasis are known, mechanisms by which the body regulates iron stores are still being elucidated [1-3]. Also, iron absorption and homeostasis are intimately linked to the inflammatory response [4]. Iron deficiency (ID) and iron deficiency anemia (IDA) are prevalent forms of nutritional deficiency. Globally, 50% of anemia is attributed to iron deficiency [5,6]. Since the body has no means of actively excreting excess iron, a sophisticated system for iron homeostasis maintains the optimal balance between adequate dietary iron absorption and iron loss in healthy individuals. Dietary iron is absorbed in a regulated manner from the gastrointestinal tract and transported between cells bound to the protein transferrin. Systemic iron homeostasis is primarily regulated by the liver-derived peptide hormone hepcidin and by the iron exporter protein ferroprotein, while intracellular iron homeostasis is regulated by the iron-regulatory protein/iron-responsive element system. The two regulatory systems are finely coordinated [7]. This finely balanced homeostasis, however, can be readily disturbed. Iron deficiency can ensue if dietary iron intake is insufficient or if iron absorption, loss, metabolism, or body distribution become abnormal due to disease or excess blood loss. A group of international experts recently proposed the following comprehensive definition of iron deficiency: “a health-related condition in which iron availability is insufficient to meet the body’s needs and which can be present with or without anemia” [8].","PeriodicalId":170669,"journal":{"name":"Interventions in Obesity & Diabetes","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Iron Deficiency Anemia and Diabetes Mellitus\",\"authors\":\"Çiğdem Bozkır\",\"doi\":\"10.31031/iod.2019.03.000557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Iron is necessary for various metabolic processes, including oxygen transport and storage, redox reactions, cell signaling and microbial defense. Absorption, transport and storage of iron are carefully regulated, presumably to avert potential toxic effects of free iron [1,2]. Both iron overload and iron deficiency can be detrimental to health, so iron homeostasis is essential. Although many factors that take part in iron homeostasis are known, mechanisms by which the body regulates iron stores are still being elucidated [1-3]. Also, iron absorption and homeostasis are intimately linked to the inflammatory response [4]. Iron deficiency (ID) and iron deficiency anemia (IDA) are prevalent forms of nutritional deficiency. Globally, 50% of anemia is attributed to iron deficiency [5,6]. Since the body has no means of actively excreting excess iron, a sophisticated system for iron homeostasis maintains the optimal balance between adequate dietary iron absorption and iron loss in healthy individuals. Dietary iron is absorbed in a regulated manner from the gastrointestinal tract and transported between cells bound to the protein transferrin. Systemic iron homeostasis is primarily regulated by the liver-derived peptide hormone hepcidin and by the iron exporter protein ferroprotein, while intracellular iron homeostasis is regulated by the iron-regulatory protein/iron-responsive element system. The two regulatory systems are finely coordinated [7]. This finely balanced homeostasis, however, can be readily disturbed. Iron deficiency can ensue if dietary iron intake is insufficient or if iron absorption, loss, metabolism, or body distribution become abnormal due to disease or excess blood loss. A group of international experts recently proposed the following comprehensive definition of iron deficiency: “a health-related condition in which iron availability is insufficient to meet the body’s needs and which can be present with or without anemia” [8].\",\"PeriodicalId\":170669,\"journal\":{\"name\":\"Interventions in Obesity & Diabetes\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interventions in Obesity & Diabetes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31031/iod.2019.03.000557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interventions in Obesity & Diabetes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31031/iod.2019.03.000557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

铁是多种代谢过程所必需的,包括氧运输和储存、氧化还原反应、细胞信号传导和微生物防御。铁的吸收、运输和储存受到严格的调控,可能是为了避免游离铁的潜在毒性作用[1,2]。铁超载和缺铁都对健康有害,所以铁的体内平衡至关重要。虽然已知许多参与铁稳态的因素,但人体调节铁储存的机制仍在阐明[1-3]。此外,铁的吸收和体内平衡与炎症反应[4]密切相关。缺铁(ID)和缺铁性贫血(IDA)是营养缺乏的常见形式。在全球范围内,50%的贫血可归因于缺铁[5,6]。由于身体没有办法主动排出多余的铁,一个复杂的铁稳态系统在健康个体中维持适当的饮食铁吸收和铁损失之间的最佳平衡。膳食铁以一种受调节的方式从胃肠道吸收,并在与转铁蛋白结合的细胞之间运输。全身铁稳态主要由肝源肽激素hepcidin和铁输出蛋白ferroprotein调节,而细胞内铁稳态则由铁调节蛋白/铁响应元件系统调节。这两个监管体系协调得很好。然而,这种精细平衡的体内平衡很容易被破坏。如果膳食铁摄入不足,或者铁的吸收、流失、代谢或身体分布因疾病或失血过多而异常,就会出现缺铁。一组国际专家最近提出了以下缺铁的综合定义:“一种与健康有关的状况,其中铁的供应不足以满足身体的需要,可能伴有或不伴有贫血”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iron Deficiency Anemia and Diabetes Mellitus
Iron is necessary for various metabolic processes, including oxygen transport and storage, redox reactions, cell signaling and microbial defense. Absorption, transport and storage of iron are carefully regulated, presumably to avert potential toxic effects of free iron [1,2]. Both iron overload and iron deficiency can be detrimental to health, so iron homeostasis is essential. Although many factors that take part in iron homeostasis are known, mechanisms by which the body regulates iron stores are still being elucidated [1-3]. Also, iron absorption and homeostasis are intimately linked to the inflammatory response [4]. Iron deficiency (ID) and iron deficiency anemia (IDA) are prevalent forms of nutritional deficiency. Globally, 50% of anemia is attributed to iron deficiency [5,6]. Since the body has no means of actively excreting excess iron, a sophisticated system for iron homeostasis maintains the optimal balance between adequate dietary iron absorption and iron loss in healthy individuals. Dietary iron is absorbed in a regulated manner from the gastrointestinal tract and transported between cells bound to the protein transferrin. Systemic iron homeostasis is primarily regulated by the liver-derived peptide hormone hepcidin and by the iron exporter protein ferroprotein, while intracellular iron homeostasis is regulated by the iron-regulatory protein/iron-responsive element system. The two regulatory systems are finely coordinated [7]. This finely balanced homeostasis, however, can be readily disturbed. Iron deficiency can ensue if dietary iron intake is insufficient or if iron absorption, loss, metabolism, or body distribution become abnormal due to disease or excess blood loss. A group of international experts recently proposed the following comprehensive definition of iron deficiency: “a health-related condition in which iron availability is insufficient to meet the body’s needs and which can be present with or without anemia” [8].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信