抽象序数

B. Hale
{"title":"抽象序数","authors":"B. Hale","doi":"10.1093/oso/9780198854296.003.0015","DOIUrl":null,"url":null,"abstract":"The neo-Fregean programme in the philosophy of mathematics seeks to provide foundations for fundamental mathematical theories in abstraction principles. Ian Rumfitt (2018) proposes to introduce ordinal numbers by means of an abstraction principle, (ORD), which says, roughly, that ‘the ordinal number attaching to one well-ordered series is identical with that attaching to another if, and only if, the two series are isomorphic’. Rumfitt’s proposal poses a sharp and serious challenge to those seeking to advance the neo-Fregean programme, for Rumfitt proposes to save (ORD) from threatening paradox by avoiding dependence on an impredicative comprehension principle. However, such a principle is usually taken to be required by the neo-Fregean account of the cardinal numbers. Thus if neo-Fregean foundations for elementary arithmetic are to be saved, we must explain how we can avoid paradox for (ORD) in another way. In this chapter, the prospects for doing so are explored.","PeriodicalId":271962,"journal":{"name":"Essence and Existence","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ordinals by Abstraction\",\"authors\":\"B. Hale\",\"doi\":\"10.1093/oso/9780198854296.003.0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The neo-Fregean programme in the philosophy of mathematics seeks to provide foundations for fundamental mathematical theories in abstraction principles. Ian Rumfitt (2018) proposes to introduce ordinal numbers by means of an abstraction principle, (ORD), which says, roughly, that ‘the ordinal number attaching to one well-ordered series is identical with that attaching to another if, and only if, the two series are isomorphic’. Rumfitt’s proposal poses a sharp and serious challenge to those seeking to advance the neo-Fregean programme, for Rumfitt proposes to save (ORD) from threatening paradox by avoiding dependence on an impredicative comprehension principle. However, such a principle is usually taken to be required by the neo-Fregean account of the cardinal numbers. Thus if neo-Fregean foundations for elementary arithmetic are to be saved, we must explain how we can avoid paradox for (ORD) in another way. In this chapter, the prospects for doing so are explored.\",\"PeriodicalId\":271962,\"journal\":{\"name\":\"Essence and Existence\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Essence and Existence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198854296.003.0015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Essence and Existence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198854296.003.0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

数学哲学中的新弗雷格计划旨在为抽象原理中的基本数学理论提供基础。Ian Rumfitt(2018)提出通过抽象原理(ORD)引入序数,粗略地说,“当且仅当两个序列同构时,一个良序序列上的序数与另一个序列上的序数相同”。拉姆菲特的建议对那些寻求推进新fregean计划的人提出了尖锐而严肃的挑战,因为拉姆菲特建议通过避免依赖于不可预知的理解原则,将(ORD)从威胁性悖论中拯救出来。然而,这种原则通常被认为是新弗雷格学派对基数的解释所必需的。因此,如果要保存初等算术的新fregean基础,我们必须解释如何以另一种方式避免(ORD)悖论。在本章中,探讨了这样做的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ordinals by Abstraction
The neo-Fregean programme in the philosophy of mathematics seeks to provide foundations for fundamental mathematical theories in abstraction principles. Ian Rumfitt (2018) proposes to introduce ordinal numbers by means of an abstraction principle, (ORD), which says, roughly, that ‘the ordinal number attaching to one well-ordered series is identical with that attaching to another if, and only if, the two series are isomorphic’. Rumfitt’s proposal poses a sharp and serious challenge to those seeking to advance the neo-Fregean programme, for Rumfitt proposes to save (ORD) from threatening paradox by avoiding dependence on an impredicative comprehension principle. However, such a principle is usually taken to be required by the neo-Fregean account of the cardinal numbers. Thus if neo-Fregean foundations for elementary arithmetic are to be saved, we must explain how we can avoid paradox for (ORD) in another way. In this chapter, the prospects for doing so are explored.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信