基于神经网络的雷达杂波分布估计

T. Bucciarelli, F. Monopoli, R. Parisi, P. Lombardo
{"title":"基于神经网络的雷达杂波分布估计","authors":"T. Bucciarelli, F. Monopoli, R. Parisi, P. Lombardo","doi":"10.1109/ICR.1996.573790","DOIUrl":null,"url":null,"abstract":"A new approach to the solution of constant false alarm rate (CFAR) problems in complex, unknown environment is proposed. An adaptive system is described in which a neural network properly transforms the input random process which describes the clutter amplitude. The network proposed is a modified neural network (Tchebychev neural network), specifically designed for the problem at hand, whose neurons implement Tchebychev polynomials up to a proper order. Experimental results are presented referring to Weibull and Rayleigh input distributions.","PeriodicalId":144063,"journal":{"name":"Proceedings of International Radar Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating radar clutter distributions via neural networks\",\"authors\":\"T. Bucciarelli, F. Monopoli, R. Parisi, P. Lombardo\",\"doi\":\"10.1109/ICR.1996.573790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new approach to the solution of constant false alarm rate (CFAR) problems in complex, unknown environment is proposed. An adaptive system is described in which a neural network properly transforms the input random process which describes the clutter amplitude. The network proposed is a modified neural network (Tchebychev neural network), specifically designed for the problem at hand, whose neurons implement Tchebychev polynomials up to a proper order. Experimental results are presented referring to Weibull and Rayleigh input distributions.\",\"PeriodicalId\":144063,\"journal\":{\"name\":\"Proceedings of International Radar Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of International Radar Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICR.1996.573790\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of International Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICR.1996.573790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种解决复杂未知环境下恒虚警率问题的新方法。描述了一种用神经网络对描述杂波幅值的输入随机过程进行适当变换的自适应系统。提出的网络是一种改进的神经网络(Tchebychev神经网络),专门针对手头的问题而设计,其神经元将Tchebychev多项式实现到适当的顺序。根据威布尔和瑞利输入分布给出了实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating radar clutter distributions via neural networks
A new approach to the solution of constant false alarm rate (CFAR) problems in complex, unknown environment is proposed. An adaptive system is described in which a neural network properly transforms the input random process which describes the clutter amplitude. The network proposed is a modified neural network (Tchebychev neural network), specifically designed for the problem at hand, whose neurons implement Tchebychev polynomials up to a proper order. Experimental results are presented referring to Weibull and Rayleigh input distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信