多精度算术计算协处理器的IP核

K. Rudnicki, T. Stefański
{"title":"多精度算术计算协处理器的IP核","authors":"K. Rudnicki, T. Stefański","doi":"10.23919/MIXDES.2018.8436868","DOIUrl":null,"url":null,"abstract":"In this paper, we present an IP core of coprocessor supporting computations requiring integer multiple-precision arithmetic (MPA). Whilst standard 32/64-bit arithmetic is sufficient to solve many computing problems, there are still applications that require higher numerical precision. Hence, the purpose of the developed coprocessor is to support and offload central processing unit (CPU) in such computations. The developed digital circuit of the coprocessor works with integer numbers of precision approaching maximally 32 kbits. Our IP core is developed using the very high speed integrated circuit hardware description language (VHDL) and simulated assuming implementation in field-programmable gate arrays (FPGAs). It exchanges data using three 64-bit data buses whereas a code for execution on the coprocessor is fetched from a dedicated 8-bit bus (all buses in AMBA standard - AXI Stream). An instruction set of the coprocessor currently consists of 7 instructions including multiplication, addition and subtraction. The computations can maximally employ 16 registers of the length 32k bits. Simulation results assuming implementation on Zynq system on chip (SoC) show that computations of the factorial $(n!)$ for $n=\\pmb{1000}$ take $\\pmb{326.4}\\mu\\pmb{\\sec}$. Such a design currently requires 7982 look-up tables (LUTs), 10400 flip-flops (FFs), 33 block RAMs (BRAMs) and 28 DSP modules. The processor is aimed to provide scalability allowing one to use the developed IP core not only in scientific computing, but also in embedded systems employing encryption based on MPA.","PeriodicalId":349007,"journal":{"name":"2018 25th International Conference \"Mixed Design of Integrated Circuits and System\" (MIXDES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"IP Core of Coprocessor for Multiple-Precision-Arithmetic Computative\",\"authors\":\"K. Rudnicki, T. Stefański\",\"doi\":\"10.23919/MIXDES.2018.8436868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an IP core of coprocessor supporting computations requiring integer multiple-precision arithmetic (MPA). Whilst standard 32/64-bit arithmetic is sufficient to solve many computing problems, there are still applications that require higher numerical precision. Hence, the purpose of the developed coprocessor is to support and offload central processing unit (CPU) in such computations. The developed digital circuit of the coprocessor works with integer numbers of precision approaching maximally 32 kbits. Our IP core is developed using the very high speed integrated circuit hardware description language (VHDL) and simulated assuming implementation in field-programmable gate arrays (FPGAs). It exchanges data using three 64-bit data buses whereas a code for execution on the coprocessor is fetched from a dedicated 8-bit bus (all buses in AMBA standard - AXI Stream). An instruction set of the coprocessor currently consists of 7 instructions including multiplication, addition and subtraction. The computations can maximally employ 16 registers of the length 32k bits. Simulation results assuming implementation on Zynq system on chip (SoC) show that computations of the factorial $(n!)$ for $n=\\\\pmb{1000}$ take $\\\\pmb{326.4}\\\\mu\\\\pmb{\\\\sec}$. Such a design currently requires 7982 look-up tables (LUTs), 10400 flip-flops (FFs), 33 block RAMs (BRAMs) and 28 DSP modules. The processor is aimed to provide scalability allowing one to use the developed IP core not only in scientific computing, but also in embedded systems employing encryption based on MPA.\",\"PeriodicalId\":349007,\"journal\":{\"name\":\"2018 25th International Conference \\\"Mixed Design of Integrated Circuits and System\\\" (MIXDES)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 25th International Conference \\\"Mixed Design of Integrated Circuits and System\\\" (MIXDES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MIXDES.2018.8436868\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 25th International Conference \"Mixed Design of Integrated Circuits and System\" (MIXDES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MIXDES.2018.8436868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种支持整数多精度算法(MPA)计算的协处理器IP核。虽然标准的32/64位算术足以解决许多计算问题,但仍有需要更高数值精度的应用。因此,开发协处理器的目的是在这种计算中支持和卸载中央处理单元(CPU)。所开发的协处理器数字电路以最接近32kbits的整数精度工作。我们的IP核是使用超高速集成电路硬件描述语言(VHDL)开发的,并在现场可编程门阵列(fpga)中模拟了假设实现。它使用三个64位数据总线交换数据,而在协处理器上执行的代码是从专用的8位总线(所有总线都在AMBA标准- AXI流中)获取的。协处理器的指令集目前由7条指令组成,包括乘法、加法和减法。计算最多可以使用16个长度为32k位的寄存器。假设在Zynq系统芯片(SoC)上实现的仿真结果表明,对于$n=\pmb{1000}$,阶乘$(n!)$的计算取$\pmb{326.4}\mu\pmb{\sec}$。这样的设计目前需要7982个查找表(lut), 10400个触发器(ff), 33个块ram (bram)和28个DSP模块。该处理器旨在提供可扩展性,使开发的IP核不仅可以用于科学计算,还可以用于基于MPA加密的嵌入式系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IP Core of Coprocessor for Multiple-Precision-Arithmetic Computative
In this paper, we present an IP core of coprocessor supporting computations requiring integer multiple-precision arithmetic (MPA). Whilst standard 32/64-bit arithmetic is sufficient to solve many computing problems, there are still applications that require higher numerical precision. Hence, the purpose of the developed coprocessor is to support and offload central processing unit (CPU) in such computations. The developed digital circuit of the coprocessor works with integer numbers of precision approaching maximally 32 kbits. Our IP core is developed using the very high speed integrated circuit hardware description language (VHDL) and simulated assuming implementation in field-programmable gate arrays (FPGAs). It exchanges data using three 64-bit data buses whereas a code for execution on the coprocessor is fetched from a dedicated 8-bit bus (all buses in AMBA standard - AXI Stream). An instruction set of the coprocessor currently consists of 7 instructions including multiplication, addition and subtraction. The computations can maximally employ 16 registers of the length 32k bits. Simulation results assuming implementation on Zynq system on chip (SoC) show that computations of the factorial $(n!)$ for $n=\pmb{1000}$ take $\pmb{326.4}\mu\pmb{\sec}$. Such a design currently requires 7982 look-up tables (LUTs), 10400 flip-flops (FFs), 33 block RAMs (BRAMs) and 28 DSP modules. The processor is aimed to provide scalability allowing one to use the developed IP core not only in scientific computing, but also in embedded systems employing encryption based on MPA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信