基于采样的最优运动规划算法中松弛方法的应用

O. Arslan, P. Tsiotras
{"title":"基于采样的最优运动规划算法中松弛方法的应用","authors":"O. Arslan, P. Tsiotras","doi":"10.1109/ICRA.2013.6630906","DOIUrl":null,"url":null,"abstract":"Several variants of incremental sampling-based algorithms have been recently proposed in order to optimally solve motion planning problems. Popular examples include the RRT* and the PRM* algorithms. These algorithms are asymptotically optimal and thus provide high quality solutions. However, the convergence rate to the optimal solution may still be slow. Borrowing from ideas used in the well-known LPA* algorithm, in this paper we present a new incremental sampling-based motion planning algorithm based on Rapidly-exploring Random Graphs (RRG), denoted by RRT# (RRT “sharp”), which also guarantees asymptotic optimality, but, in addition, it also ensures that the constructed spanning tree rooted at the initial state contains lowest-cost path information for vertices which have the potential to be part of the optimal solution. This implies that the best possible solution is readily computed if there are some vertices in the current graph that are already in the goal region.","PeriodicalId":259746,"journal":{"name":"2013 IEEE International Conference on Robotics and Automation","volume":"38 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"166","resultStr":"{\"title\":\"Use of relaxation methods in sampling-based algorithms for optimal motion planning\",\"authors\":\"O. Arslan, P. Tsiotras\",\"doi\":\"10.1109/ICRA.2013.6630906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several variants of incremental sampling-based algorithms have been recently proposed in order to optimally solve motion planning problems. Popular examples include the RRT* and the PRM* algorithms. These algorithms are asymptotically optimal and thus provide high quality solutions. However, the convergence rate to the optimal solution may still be slow. Borrowing from ideas used in the well-known LPA* algorithm, in this paper we present a new incremental sampling-based motion planning algorithm based on Rapidly-exploring Random Graphs (RRG), denoted by RRT# (RRT “sharp”), which also guarantees asymptotic optimality, but, in addition, it also ensures that the constructed spanning tree rooted at the initial state contains lowest-cost path information for vertices which have the potential to be part of the optimal solution. This implies that the best possible solution is readily computed if there are some vertices in the current graph that are already in the goal region.\",\"PeriodicalId\":259746,\"journal\":{\"name\":\"2013 IEEE International Conference on Robotics and Automation\",\"volume\":\"38 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"166\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Robotics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA.2013.6630906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2013.6630906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 166

摘要

为了最优地解决运动规划问题,最近提出了几种基于增量采样的算法。流行的例子包括RRT*和PRM*算法。这些算法是渐近最优的,因此可以提供高质量的解。然而,收敛到最优解的速度可能仍然很慢。借鉴著名的LPA*算法的思想,本文提出了一种新的基于快速探索随机图(RRG)的基于增量采样的运动规划算法,用RRT# (RRT“sharp”)表示,它也保证了渐近最优性,但此外,它还保证了在初始状态下构建的生成树包含有可能成为最优解一部分的顶点的最低代价路径信息。这意味着,如果当前图中有一些顶点已经在目标区域内,则很容易计算出最佳可能解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Use of relaxation methods in sampling-based algorithms for optimal motion planning
Several variants of incremental sampling-based algorithms have been recently proposed in order to optimally solve motion planning problems. Popular examples include the RRT* and the PRM* algorithms. These algorithms are asymptotically optimal and thus provide high quality solutions. However, the convergence rate to the optimal solution may still be slow. Borrowing from ideas used in the well-known LPA* algorithm, in this paper we present a new incremental sampling-based motion planning algorithm based on Rapidly-exploring Random Graphs (RRG), denoted by RRT# (RRT “sharp”), which also guarantees asymptotic optimality, but, in addition, it also ensures that the constructed spanning tree rooted at the initial state contains lowest-cost path information for vertices which have the potential to be part of the optimal solution. This implies that the best possible solution is readily computed if there are some vertices in the current graph that are already in the goal region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信