基于Levenberg-Marquardt训练算法的三相感应电动机神经最优控制器

M. Gaiceanu, E. Roșu, A. Tataru
{"title":"基于Levenberg-Marquardt训练算法的三相感应电动机神经最优控制器","authors":"M. Gaiceanu, E. Roșu, A. Tataru","doi":"10.1109/ICPST.2000.900038","DOIUrl":null,"url":null,"abstract":"The features of a neural network make neuro-controllers suitable for use in electrical drives, in which the higher speed computation is required. The core of the neurocontrol system is the neurocontroller, and the key technique is the training algorithm. In this paper the features of the Levenberg-Marquardt algorithm are emphasized. The obtained neurocontroller provides an approximate solution of the matrix Riccati differential equation (MRDE). Hence, the obtained neuro-optimal controller performs, during dynamic regimes, the main tasks: smooth response, no oscillations on the control interval, no overshoot, fast compensation of the load torque, and input energy minimization. In order to obtain the accuracy of the optimal solution, the input pattern of the neuro-optimal controller was the choice to include all the nonlinearities of the three-phase induction motor in rotor field oriented coordinates fed by optimal current.","PeriodicalId":330989,"journal":{"name":"PowerCon 2000. 2000 International Conference on Power System Technology. Proceedings (Cat. No.00EX409)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Neuro-optimal controller for three-phase induction motor based on Levenberg-Marquardt training algorithm\",\"authors\":\"M. Gaiceanu, E. Roșu, A. Tataru\",\"doi\":\"10.1109/ICPST.2000.900038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The features of a neural network make neuro-controllers suitable for use in electrical drives, in which the higher speed computation is required. The core of the neurocontrol system is the neurocontroller, and the key technique is the training algorithm. In this paper the features of the Levenberg-Marquardt algorithm are emphasized. The obtained neurocontroller provides an approximate solution of the matrix Riccati differential equation (MRDE). Hence, the obtained neuro-optimal controller performs, during dynamic regimes, the main tasks: smooth response, no oscillations on the control interval, no overshoot, fast compensation of the load torque, and input energy minimization. In order to obtain the accuracy of the optimal solution, the input pattern of the neuro-optimal controller was the choice to include all the nonlinearities of the three-phase induction motor in rotor field oriented coordinates fed by optimal current.\",\"PeriodicalId\":330989,\"journal\":{\"name\":\"PowerCon 2000. 2000 International Conference on Power System Technology. Proceedings (Cat. No.00EX409)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PowerCon 2000. 2000 International Conference on Power System Technology. Proceedings (Cat. No.00EX409)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPST.2000.900038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PowerCon 2000. 2000 International Conference on Power System Technology. Proceedings (Cat. No.00EX409)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPST.2000.900038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

神经网络的特性使得神经控制器适用于需要更高速度计算的电力驱动。神经控制系统的核心是神经控制器,关键技术是训练算法。本文着重介绍了Levenberg-Marquardt算法的特点。所得到的神经控制器提供了矩阵Riccati微分方程(MRDE)的近似解。因此,所获得的神经最优控制器在动态状态下执行的主要任务是:平滑响应、控制区间无振荡、无超调、负载转矩的快速补偿以及输入能量最小化。为了获得最优解的精度,选择神经最优控制器的输入模式,将三相异步电动机的所有非线性都包含在由最优电流馈送的转子磁场定向坐标中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neuro-optimal controller for three-phase induction motor based on Levenberg-Marquardt training algorithm
The features of a neural network make neuro-controllers suitable for use in electrical drives, in which the higher speed computation is required. The core of the neurocontrol system is the neurocontroller, and the key technique is the training algorithm. In this paper the features of the Levenberg-Marquardt algorithm are emphasized. The obtained neurocontroller provides an approximate solution of the matrix Riccati differential equation (MRDE). Hence, the obtained neuro-optimal controller performs, during dynamic regimes, the main tasks: smooth response, no oscillations on the control interval, no overshoot, fast compensation of the load torque, and input energy minimization. In order to obtain the accuracy of the optimal solution, the input pattern of the neuro-optimal controller was the choice to include all the nonlinearities of the three-phase induction motor in rotor field oriented coordinates fed by optimal current.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信