A. Schiffmacher, Lorenz Litzenberger, J. Wilde, V. Polezhaev, T. Huesgen
{"title":"银烧结技术安装在印刷线路板上的电力电子组件","authors":"A. Schiffmacher, Lorenz Litzenberger, J. Wilde, V. Polezhaev, T. Huesgen","doi":"10.1109/ESTC.2018.8546334","DOIUrl":null,"url":null,"abstract":"The increasing demands on power electronics with high currents and high operating temperatures has led to the establishment of ceramic substrates. More efficient heat distribution, as well as increased thermal durability, are two aspects of the superior properties of ceramic substrates compared to conventional Printed Wiring Boards (PWB). Nevertheless, there is an demand to develop new solutions based on PWBs to provide affordable and highly integrated power electronic devices for electromobility. For cost optimization, it would be advantageous to replace the hybrid technology with a single board in order to reduce materials, parts and interconnections. Unfortunately, mounting techniques like pressure-assisted silver sintering lead to damages of epoxy-glass-substrates due to high bonding pressures and high temperatures during bonding. Recent projects led to the development of high-temperature stable benzoxazin-based wiring boards. Investigations on the quality and reliability of sintered assemblies on these PWB-substrates are still pending and were systematically carried out in this work.","PeriodicalId":198238,"journal":{"name":"2018 7th Electronic System-Integration Technology Conference (ESTC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Power Electronic Assemblies on Printed Wiring Boards Mounted by Silver Sintering\",\"authors\":\"A. Schiffmacher, Lorenz Litzenberger, J. Wilde, V. Polezhaev, T. Huesgen\",\"doi\":\"10.1109/ESTC.2018.8546334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing demands on power electronics with high currents and high operating temperatures has led to the establishment of ceramic substrates. More efficient heat distribution, as well as increased thermal durability, are two aspects of the superior properties of ceramic substrates compared to conventional Printed Wiring Boards (PWB). Nevertheless, there is an demand to develop new solutions based on PWBs to provide affordable and highly integrated power electronic devices for electromobility. For cost optimization, it would be advantageous to replace the hybrid technology with a single board in order to reduce materials, parts and interconnections. Unfortunately, mounting techniques like pressure-assisted silver sintering lead to damages of epoxy-glass-substrates due to high bonding pressures and high temperatures during bonding. Recent projects led to the development of high-temperature stable benzoxazin-based wiring boards. Investigations on the quality and reliability of sintered assemblies on these PWB-substrates are still pending and were systematically carried out in this work.\",\"PeriodicalId\":198238,\"journal\":{\"name\":\"2018 7th Electronic System-Integration Technology Conference (ESTC)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 7th Electronic System-Integration Technology Conference (ESTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESTC.2018.8546334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Electronic System-Integration Technology Conference (ESTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESTC.2018.8546334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Power Electronic Assemblies on Printed Wiring Boards Mounted by Silver Sintering
The increasing demands on power electronics with high currents and high operating temperatures has led to the establishment of ceramic substrates. More efficient heat distribution, as well as increased thermal durability, are two aspects of the superior properties of ceramic substrates compared to conventional Printed Wiring Boards (PWB). Nevertheless, there is an demand to develop new solutions based on PWBs to provide affordable and highly integrated power electronic devices for electromobility. For cost optimization, it would be advantageous to replace the hybrid technology with a single board in order to reduce materials, parts and interconnections. Unfortunately, mounting techniques like pressure-assisted silver sintering lead to damages of epoxy-glass-substrates due to high bonding pressures and high temperatures during bonding. Recent projects led to the development of high-temperature stable benzoxazin-based wiring boards. Investigations on the quality and reliability of sintered assemblies on these PWB-substrates are still pending and were systematically carried out in this work.