{"title":"使用编码一致性检查的人工神经网络的有效错误恢复","authors":"Sujay Pandey, Suvadeep Banerjee, A. Chatterjee","doi":"10.1109/ETS.2018.8400706","DOIUrl":null,"url":null,"abstract":"In this research, a low cost error detection and correction approach is developed for multilayer perceptron networks, where checker neurons are used to encode hidden layer functions using independent training experiments. Error detection and correction is predicated on validating consistency properties of the encoded checks and shows that high coverage of injected errors can be achieved with extremely low computational overhead.","PeriodicalId":223459,"journal":{"name":"2018 IEEE 23rd European Test Symposium (ETS)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"ReiNN: Efficient error resilience in artificial neural networks using encoded consistency checks\",\"authors\":\"Sujay Pandey, Suvadeep Banerjee, A. Chatterjee\",\"doi\":\"10.1109/ETS.2018.8400706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, a low cost error detection and correction approach is developed for multilayer perceptron networks, where checker neurons are used to encode hidden layer functions using independent training experiments. Error detection and correction is predicated on validating consistency properties of the encoded checks and shows that high coverage of injected errors can be achieved with extremely low computational overhead.\",\"PeriodicalId\":223459,\"journal\":{\"name\":\"2018 IEEE 23rd European Test Symposium (ETS)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 23rd European Test Symposium (ETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETS.2018.8400706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS.2018.8400706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ReiNN: Efficient error resilience in artificial neural networks using encoded consistency checks
In this research, a low cost error detection and correction approach is developed for multilayer perceptron networks, where checker neurons are used to encode hidden layer functions using independent training experiments. Error detection and correction is predicated on validating consistency properties of the encoded checks and shows that high coverage of injected errors can be achieved with extremely low computational overhead.