{"title":"利用智能静压传动自动控制履带式车辆的运动,实现GPS坐标下的目标指定","authors":"S. Kondakov, N. V. Dubrovskiy","doi":"10.17816/0321-4443-66388","DOIUrl":null,"url":null,"abstract":"The article is devoted to algorithmizing the control of an autonomous vehicle by the example of the caterpillar vehicle with an onboard hydrostatic transmission. The authors developed a mathematical model which has scientific novelty, obtained the results of an analytical solution and a physical experiment that confirmed the reliability of the model and the operability of the proposed algorithm for tractor control in the automatic mode in the global positioning coordinates. The model takes into account the features of the hidostatic drive, made on-board, including mechanical and volume losses. A characteristic feature of the mathematical model is the differential equations for the industrial logic controller and the control mechanism for the inclined washer of the axial-piston adjustable hydrostatic transmission pump and the algebraic equations for conversion of the Cartesian coordinates to the global positioning coordinates. The mathematical model is implemented in the VISSIM programming environment. The object of the investigation is the industrial tractor TM-10 with hydrostatic transmission which is produced by the plant «DST-Ural» in Chelyabinsk. The physical experiment was carried out on the experimental model and showed satisfactory results. The developed algorithm is implemented in the CoDeSys environment for an industrial controller that controls the movement of production tractors. The extended mathematical model allows to assess more accurately of transient processes of the motion in the automatic mode. The formation of the control action via GPS coordinates provides new possibilities during solving the task of positioning the caterpillar vehicle in the open area. The developed algorithm allows to estimate the time which is spent on the formation of commands by microprocessor devices. The conducted investigations allowed to form new consumer properties to the industrial tractor of the plant «DST-Ural», consisting in the appeared possibility of using tractors without an operator in harmful or dangerous conditions for humans.","PeriodicalId":136662,"journal":{"name":"Traktory i sel hozmashiny","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic control of the movement of the caterpillar vehicle with intelligent hydrostatic transmission for target designation in GPS coordinates\",\"authors\":\"S. Kondakov, N. V. Dubrovskiy\",\"doi\":\"10.17816/0321-4443-66388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article is devoted to algorithmizing the control of an autonomous vehicle by the example of the caterpillar vehicle with an onboard hydrostatic transmission. The authors developed a mathematical model which has scientific novelty, obtained the results of an analytical solution and a physical experiment that confirmed the reliability of the model and the operability of the proposed algorithm for tractor control in the automatic mode in the global positioning coordinates. The model takes into account the features of the hidostatic drive, made on-board, including mechanical and volume losses. A characteristic feature of the mathematical model is the differential equations for the industrial logic controller and the control mechanism for the inclined washer of the axial-piston adjustable hydrostatic transmission pump and the algebraic equations for conversion of the Cartesian coordinates to the global positioning coordinates. The mathematical model is implemented in the VISSIM programming environment. The object of the investigation is the industrial tractor TM-10 with hydrostatic transmission which is produced by the plant «DST-Ural» in Chelyabinsk. The physical experiment was carried out on the experimental model and showed satisfactory results. The developed algorithm is implemented in the CoDeSys environment for an industrial controller that controls the movement of production tractors. The extended mathematical model allows to assess more accurately of transient processes of the motion in the automatic mode. The formation of the control action via GPS coordinates provides new possibilities during solving the task of positioning the caterpillar vehicle in the open area. The developed algorithm allows to estimate the time which is spent on the formation of commands by microprocessor devices. The conducted investigations allowed to form new consumer properties to the industrial tractor of the plant «DST-Ural», consisting in the appeared possibility of using tractors without an operator in harmful or dangerous conditions for humans.\",\"PeriodicalId\":136662,\"journal\":{\"name\":\"Traktory i sel hozmashiny\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Traktory i sel hozmashiny\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17816/0321-4443-66388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traktory i sel hozmashiny","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17816/0321-4443-66388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic control of the movement of the caterpillar vehicle with intelligent hydrostatic transmission for target designation in GPS coordinates
The article is devoted to algorithmizing the control of an autonomous vehicle by the example of the caterpillar vehicle with an onboard hydrostatic transmission. The authors developed a mathematical model which has scientific novelty, obtained the results of an analytical solution and a physical experiment that confirmed the reliability of the model and the operability of the proposed algorithm for tractor control in the automatic mode in the global positioning coordinates. The model takes into account the features of the hidostatic drive, made on-board, including mechanical and volume losses. A characteristic feature of the mathematical model is the differential equations for the industrial logic controller and the control mechanism for the inclined washer of the axial-piston adjustable hydrostatic transmission pump and the algebraic equations for conversion of the Cartesian coordinates to the global positioning coordinates. The mathematical model is implemented in the VISSIM programming environment. The object of the investigation is the industrial tractor TM-10 with hydrostatic transmission which is produced by the plant «DST-Ural» in Chelyabinsk. The physical experiment was carried out on the experimental model and showed satisfactory results. The developed algorithm is implemented in the CoDeSys environment for an industrial controller that controls the movement of production tractors. The extended mathematical model allows to assess more accurately of transient processes of the motion in the automatic mode. The formation of the control action via GPS coordinates provides new possibilities during solving the task of positioning the caterpillar vehicle in the open area. The developed algorithm allows to estimate the time which is spent on the formation of commands by microprocessor devices. The conducted investigations allowed to form new consumer properties to the industrial tractor of the plant «DST-Ural», consisting in the appeared possibility of using tractors without an operator in harmful or dangerous conditions for humans.