基于遗传算法的混合配电发电机优化配置增强电压分布

John Edward A. Abutin, Henrich T. Jovena, Robin Paul L. Trinidad, M. Pacis, G. Magwili
{"title":"基于遗传算法的混合配电发电机优化配置增强电压分布","authors":"John Edward A. Abutin, Henrich T. Jovena, Robin Paul L. Trinidad, M. Pacis, G. Magwili","doi":"10.1109/TENSYMP52854.2021.9550767","DOIUrl":null,"url":null,"abstract":"Placing Distributed Generator (DG) plays an important role in electric power systems as it reduces power losses and increases the voltage profiles. It is also important to take note that aside from placing DGs in the system, it is also important to locate its optimum position because the wrong placement of DGs can result to further power losses and voltage profile violation. This paper presents three cases for the study of the IEEE – 33 Bus system. A genetic algorithm was used as the optimization technique. In this test case, we used the 33-bus as the base case, while the other cases are putting a 0.29MW solar, 0.10MW wind, and lastly combining the 0.29MW solar and 0.10MW wind at the end of the simulation the case that has the lowest percent loss is the Hybrid system with Solar and Wind, which has 95.2092 percentage loss.","PeriodicalId":137485,"journal":{"name":"2021 IEEE Region 10 Symposium (TENSYMP)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Voltage Profile Enhancement by Optimal Placement of Hybrid Distribution Generators using Genetic Algorithm\",\"authors\":\"John Edward A. Abutin, Henrich T. Jovena, Robin Paul L. Trinidad, M. Pacis, G. Magwili\",\"doi\":\"10.1109/TENSYMP52854.2021.9550767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Placing Distributed Generator (DG) plays an important role in electric power systems as it reduces power losses and increases the voltage profiles. It is also important to take note that aside from placing DGs in the system, it is also important to locate its optimum position because the wrong placement of DGs can result to further power losses and voltage profile violation. This paper presents three cases for the study of the IEEE – 33 Bus system. A genetic algorithm was used as the optimization technique. In this test case, we used the 33-bus as the base case, while the other cases are putting a 0.29MW solar, 0.10MW wind, and lastly combining the 0.29MW solar and 0.10MW wind at the end of the simulation the case that has the lowest percent loss is the Hybrid system with Solar and Wind, which has 95.2092 percentage loss.\",\"PeriodicalId\":137485,\"journal\":{\"name\":\"2021 IEEE Region 10 Symposium (TENSYMP)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Region 10 Symposium (TENSYMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENSYMP52854.2021.9550767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENSYMP52854.2021.9550767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

分布式发电机(DG)在电力系统中具有降低功率损耗和提高电压分布的重要作用。同样重要的是要注意,除了在系统中放置dg之外,确定其最佳位置也很重要,因为dg的错误放置可能导致进一步的功率损失和电压分布违规。本文介绍了IEEE - 33总线系统的三个研究实例。采用遗传算法作为优化技术。在这个测试案例中,我们使用33总线作为基本案例,而其他案例则是0.29兆瓦的太阳能,0.10兆瓦的风能,最后在模拟结束时将0.29兆瓦的太阳能和0.10兆瓦的风能结合起来,损耗百分比最低的案例是太阳能和风能混合系统,损耗百分比为95.2092。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Voltage Profile Enhancement by Optimal Placement of Hybrid Distribution Generators using Genetic Algorithm
Placing Distributed Generator (DG) plays an important role in electric power systems as it reduces power losses and increases the voltage profiles. It is also important to take note that aside from placing DGs in the system, it is also important to locate its optimum position because the wrong placement of DGs can result to further power losses and voltage profile violation. This paper presents three cases for the study of the IEEE – 33 Bus system. A genetic algorithm was used as the optimization technique. In this test case, we used the 33-bus as the base case, while the other cases are putting a 0.29MW solar, 0.10MW wind, and lastly combining the 0.29MW solar and 0.10MW wind at the end of the simulation the case that has the lowest percent loss is the Hybrid system with Solar and Wind, which has 95.2092 percentage loss.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信