基于SIR模型的COVID-19统计分析

Feng Liang, Ziyuan Li
{"title":"基于SIR模型的COVID-19统计分析","authors":"Feng Liang, Ziyuan Li","doi":"10.1145/3449258.3449261","DOIUrl":null,"url":null,"abstract":"This article analyzes global COVID-19 from a statistical perspective. Based on SIR Model, the rate of infectivity and recovery in each country are calculated, which are used to be a clustering basis. Thus, 20 selected countries are divided into 3 clusters. The article also studies how the dynamics would change when adding noise to parameters and give some policies and solutions based on two situations. Sensitivity analysis indicates that the infection rate plays a more significant role in outcomes.","PeriodicalId":278216,"journal":{"name":"Proceedings of the 2020 4th International Conference on Computational Biology and Bioinformatics","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Statistical Analysis on COVID-19 Based on SIR Model\",\"authors\":\"Feng Liang, Ziyuan Li\",\"doi\":\"10.1145/3449258.3449261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article analyzes global COVID-19 from a statistical perspective. Based on SIR Model, the rate of infectivity and recovery in each country are calculated, which are used to be a clustering basis. Thus, 20 selected countries are divided into 3 clusters. The article also studies how the dynamics would change when adding noise to parameters and give some policies and solutions based on two situations. Sensitivity analysis indicates that the infection rate plays a more significant role in outcomes.\",\"PeriodicalId\":278216,\"journal\":{\"name\":\"Proceedings of the 2020 4th International Conference on Computational Biology and Bioinformatics\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 4th International Conference on Computational Biology and Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3449258.3449261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 4th International Conference on Computational Biology and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3449258.3449261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文从统计角度对全球新冠肺炎疫情进行了分析。基于SIR模型,计算每个国家的感染率和恢复率,并将其作为聚类基础。因此,20个选定的国家被分成3组。本文还研究了在参数中加入噪声时动力学的变化,并针对两种情况给出了相应的策略和解决方法。敏感性分析表明,感染率对预后的影响更为显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Analysis on COVID-19 Based on SIR Model
This article analyzes global COVID-19 from a statistical perspective. Based on SIR Model, the rate of infectivity and recovery in each country are calculated, which are used to be a clustering basis. Thus, 20 selected countries are divided into 3 clusters. The article also studies how the dynamics would change when adding noise to parameters and give some policies and solutions based on two situations. Sensitivity analysis indicates that the infection rate plays a more significant role in outcomes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信