高性能网络中基于公共密钥的多数据流合并

Marco Mazzucco, A. Ananthanarayan, R. Grossman, Jorge Levera, G. Rao
{"title":"高性能网络中基于公共密钥的多数据流合并","authors":"Marco Mazzucco, A. Ananthanarayan, R. Grossman, Jorge Levera, G. Rao","doi":"10.1109/SC.2002.10044","DOIUrl":null,"url":null,"abstract":"The model for data mining on streaming data assumes that there is a buffer of fixed length and a data stream of infinite length and the challenge is to extract patterns, changes, anomalies, and statistically significant structures by examining the data one time and storing records and derived attributes of length less than N. As data grids, data webs, and semantic webs become more common, mining distributed streaming data will become more and more important. The first step when presented with two or more distributed streams is to merge them using a common key. In this paper, we present two algorithms for merging streaming data using a common key. We also present experimental studies showing these algorithms scale in practice to OC-12 networks.","PeriodicalId":302800,"journal":{"name":"ACM/IEEE SC 2002 Conference (SC'02)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Merging Multiple Data Streams on Common Keys over High Performance Networks\",\"authors\":\"Marco Mazzucco, A. Ananthanarayan, R. Grossman, Jorge Levera, G. Rao\",\"doi\":\"10.1109/SC.2002.10044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The model for data mining on streaming data assumes that there is a buffer of fixed length and a data stream of infinite length and the challenge is to extract patterns, changes, anomalies, and statistically significant structures by examining the data one time and storing records and derived attributes of length less than N. As data grids, data webs, and semantic webs become more common, mining distributed streaming data will become more and more important. The first step when presented with two or more distributed streams is to merge them using a common key. In this paper, we present two algorithms for merging streaming data using a common key. We also present experimental studies showing these algorithms scale in practice to OC-12 networks.\",\"PeriodicalId\":302800,\"journal\":{\"name\":\"ACM/IEEE SC 2002 Conference (SC'02)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM/IEEE SC 2002 Conference (SC'02)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.2002.10044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE SC 2002 Conference (SC'02)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.2002.10044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

流数据的数据挖掘模型假设存在固定长度的缓冲区和无限长度的数据流,其挑战是通过一次性检查数据并存储长度小于n的记录和派生属性来提取模式、变化、异常和统计显著结构。随着数据网格、数据网和语义网的日益普遍,挖掘分布式流数据将变得越来越重要。当出现两个或多个分布式流时,第一步是使用公共密钥合并它们。在本文中,我们提出了两种使用公共密钥合并流数据的算法。我们还提出了实验研究,表明这些算法在实践中适用于OC-12网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Merging Multiple Data Streams on Common Keys over High Performance Networks
The model for data mining on streaming data assumes that there is a buffer of fixed length and a data stream of infinite length and the challenge is to extract patterns, changes, anomalies, and statistically significant structures by examining the data one time and storing records and derived attributes of length less than N. As data grids, data webs, and semantic webs become more common, mining distributed streaming data will become more and more important. The first step when presented with two or more distributed streams is to merge them using a common key. In this paper, we present two algorithms for merging streaming data using a common key. We also present experimental studies showing these algorithms scale in practice to OC-12 networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信