利用U-NET CNN对乳腺癌进行红外图像分割检测

Matheus F. O. Baffa, A. M. Coelho, Aura Conci
{"title":"利用U-NET CNN对乳腺癌进行红外图像分割检测","authors":"Matheus F. O. Baffa, A. M. Coelho, Aura Conci","doi":"10.5753/sbcas.2021.16058","DOIUrl":null,"url":null,"abstract":"O câncer de mama é o principal tipo de câncer entre as mulheres. De acordo com o World Cancer Research Fund, em 2018, mais de 2 milhões de novos casos foram detectados em todo o mundo. Apesar de sua alta ocorrência, a detecção precoce proporciona um melhor prognóstico e auxilia no aumento da sobrevida do paciente oncológico. Avanços significativos nas técnicas de rastreamento, como as imagens infravermelhas, forneceram uma maneira barata e menos invasiva forma de detectar a doença. Além disso, ferramentas computacionais podem ser utilizadas para auxiliar os médicos a fornecerem um melhor diagnóstico. Assim, este artigo apresenta um método de segmentação baseado em Redes Neurais Convolucionais U-Net. Em contraste com o estado da arte, as abordagens de aprendizado de máquina têm se mostrado eficientes para a segmentação da região de interesse deste trabalho, atingindo uma acurácia de 98,24% e uma Intersecção-Sobre-União de 94,38%. O uso deste método de segmentação pode ser muito útil para tarefas de classificação, uma vez que a região de interesse é bem delimitada para extração de características.","PeriodicalId":413867,"journal":{"name":"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Segmentação de Imagens Infravermelhas Para Detecção do Câncer de Mama Utilizando U-NET CNN\",\"authors\":\"Matheus F. O. Baffa, A. M. Coelho, Aura Conci\",\"doi\":\"10.5753/sbcas.2021.16058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"O câncer de mama é o principal tipo de câncer entre as mulheres. De acordo com o World Cancer Research Fund, em 2018, mais de 2 milhões de novos casos foram detectados em todo o mundo. Apesar de sua alta ocorrência, a detecção precoce proporciona um melhor prognóstico e auxilia no aumento da sobrevida do paciente oncológico. Avanços significativos nas técnicas de rastreamento, como as imagens infravermelhas, forneceram uma maneira barata e menos invasiva forma de detectar a doença. Além disso, ferramentas computacionais podem ser utilizadas para auxiliar os médicos a fornecerem um melhor diagnóstico. Assim, este artigo apresenta um método de segmentação baseado em Redes Neurais Convolucionais U-Net. Em contraste com o estado da arte, as abordagens de aprendizado de máquina têm se mostrado eficientes para a segmentação da região de interesse deste trabalho, atingindo uma acurácia de 98,24% e uma Intersecção-Sobre-União de 94,38%. O uso deste método de segmentação pode ser muito útil para tarefas de classificação, uma vez que a região de interesse é bem delimitada para extração de características.\",\"PeriodicalId\":413867,\"journal\":{\"name\":\"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/sbcas.2021.16058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXI Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas.2021.16058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

乳腺癌是女性癌症的主要类型。根据世界癌症研究基金的数据,2018年,全球发现了200多万新病例。尽管它的发病率很高,但早期发现可以提供更好的预后,并有助于提高肿瘤患者的生存率。进步的fi俘虏的,根据红外图像的扫描技术提供了一种廉价的方式检测疾病的微创方法。此外,计算工具可以用来帮助医生提供更好的诊断。因此,本文提出了一种基于U-Net卷积神经网络的分割方法。与最先进的机器学习方法已经证明和fi知道这份工作感兴趣的地区分割的精度可以达到98 24%和十字路口-苏联的94 . 38%。使用这种方法的分割分类fi阳离子任务可能非常有用,因为该地区的利益对于提取的特征是定义良好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segmentação de Imagens Infravermelhas Para Detecção do Câncer de Mama Utilizando U-NET CNN
O câncer de mama é o principal tipo de câncer entre as mulheres. De acordo com o World Cancer Research Fund, em 2018, mais de 2 milhões de novos casos foram detectados em todo o mundo. Apesar de sua alta ocorrência, a detecção precoce proporciona um melhor prognóstico e auxilia no aumento da sobrevida do paciente oncológico. Avanços significativos nas técnicas de rastreamento, como as imagens infravermelhas, forneceram uma maneira barata e menos invasiva forma de detectar a doença. Além disso, ferramentas computacionais podem ser utilizadas para auxiliar os médicos a fornecerem um melhor diagnóstico. Assim, este artigo apresenta um método de segmentação baseado em Redes Neurais Convolucionais U-Net. Em contraste com o estado da arte, as abordagens de aprendizado de máquina têm se mostrado eficientes para a segmentação da região de interesse deste trabalho, atingindo uma acurácia de 98,24% e uma Intersecção-Sobre-União de 94,38%. O uso deste método de segmentação pode ser muito útil para tarefas de classificação, uma vez que a região de interesse é bem delimitada para extração de características.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信