高效非接触式输电系统的设计与仿真及相关逆变器的软开关实现

A. Deihimi, P. G. Khorasani
{"title":"高效非接触式输电系统的设计与仿真及相关逆变器的软开关实现","authors":"A. Deihimi, P. G. Khorasani","doi":"10.1109/POWERENG.2009.4915248","DOIUrl":null,"url":null,"abstract":"A detailed design procedure for a contactless power transmission system with high efficiency is presented in this paper. A phase-shift full-bridge converter is used in order to control output power and adjust frequency precisely at the desired value of resonance to gain soft switching advantages. In addition, it will be discussed how to use performance factor curves of ferrite cores to select the best core for achieving maximum efficiency. Moreover, the methods to obtain system inductance are reviewed in the paper. As a design example, a contactless power transmission system for transmission of 500 W through 1 mm airgap is designed with an efficiency of 98% by applying the described design procedure. The selected core for this example is the ETD core. To validate the described design procedure, the results of examplar design are compared with those obtained from simulations by Matlab/Simulink.","PeriodicalId":246039,"journal":{"name":"2009 International Conference on Power Engineering, Energy and Electrical Drives","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Design & simulation of a contactless power transmission system with maximum efficiency & soft switching realization of related inverter\",\"authors\":\"A. Deihimi, P. G. Khorasani\",\"doi\":\"10.1109/POWERENG.2009.4915248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A detailed design procedure for a contactless power transmission system with high efficiency is presented in this paper. A phase-shift full-bridge converter is used in order to control output power and adjust frequency precisely at the desired value of resonance to gain soft switching advantages. In addition, it will be discussed how to use performance factor curves of ferrite cores to select the best core for achieving maximum efficiency. Moreover, the methods to obtain system inductance are reviewed in the paper. As a design example, a contactless power transmission system for transmission of 500 W through 1 mm airgap is designed with an efficiency of 98% by applying the described design procedure. The selected core for this example is the ETD core. To validate the described design procedure, the results of examplar design are compared with those obtained from simulations by Matlab/Simulink.\",\"PeriodicalId\":246039,\"journal\":{\"name\":\"2009 International Conference on Power Engineering, Energy and Electrical Drives\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Power Engineering, Energy and Electrical Drives\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/POWERENG.2009.4915248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Power Engineering, Energy and Electrical Drives","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POWERENG.2009.4915248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

介绍了一种高效非接触式电力传输系统的详细设计过程。采用移相全桥变换器控制输出功率,将频率精确调节到所需的谐振值,从而获得软开关优势。此外,还将讨论如何利用铁氧体磁芯的性能因子曲线来选择最佳磁芯,以达到最大的效率。此外,还对系统电感的获取方法进行了综述。作为一个设计实例,应用所描述的设计过程,设计了一个通过1mm气隙传输500w功率的非接触式电力传输系统,其效率为98%。本例选择的核心是ETD核心。为了验证所描述的设计过程,将实例设计结果与Matlab/Simulink仿真结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design & simulation of a contactless power transmission system with maximum efficiency & soft switching realization of related inverter
A detailed design procedure for a contactless power transmission system with high efficiency is presented in this paper. A phase-shift full-bridge converter is used in order to control output power and adjust frequency precisely at the desired value of resonance to gain soft switching advantages. In addition, it will be discussed how to use performance factor curves of ferrite cores to select the best core for achieving maximum efficiency. Moreover, the methods to obtain system inductance are reviewed in the paper. As a design example, a contactless power transmission system for transmission of 500 W through 1 mm airgap is designed with an efficiency of 98% by applying the described design procedure. The selected core for this example is the ETD core. To validate the described design procedure, the results of examplar design are compared with those obtained from simulations by Matlab/Simulink.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信