基于深度神经网络的道路目标检测

Huieun Kim, Youngwan Lee, Byeounghak Yim, Eunsoo Park, Hakil Kim
{"title":"基于深度神经网络的道路目标检测","authors":"Huieun Kim, Youngwan Lee, Byeounghak Yim, Eunsoo Park, Hakil Kim","doi":"10.1109/ICCE-ASIA.2016.7804765","DOIUrl":null,"url":null,"abstract":"Industrialization of transportation system has derived serious accidents that resulted in thousands of deaths. To solve the problem, vision based object detection for autonomous vehicle and advanced driver assistance system has been researched. In this study, we provide experimentations of object detection and localization in on-road environment using deep neural network. We compared the detection accuracy among object classes and analyzed the recognition results with fine-tuned Single shot multibox detector on KITTI dataset. This work improves the performance of original detection model by increasing precision of overall detection about 6%, especially about 10% in pedestrian and cyclist.","PeriodicalId":229557,"journal":{"name":"2016 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"On-road object detection using deep neural network\",\"authors\":\"Huieun Kim, Youngwan Lee, Byeounghak Yim, Eunsoo Park, Hakil Kim\",\"doi\":\"10.1109/ICCE-ASIA.2016.7804765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Industrialization of transportation system has derived serious accidents that resulted in thousands of deaths. To solve the problem, vision based object detection for autonomous vehicle and advanced driver assistance system has been researched. In this study, we provide experimentations of object detection and localization in on-road environment using deep neural network. We compared the detection accuracy among object classes and analyzed the recognition results with fine-tuned Single shot multibox detector on KITTI dataset. This work improves the performance of original detection model by increasing precision of overall detection about 6%, especially about 10% in pedestrian and cyclist.\",\"PeriodicalId\":229557,\"journal\":{\"name\":\"2016 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-ASIA.2016.7804765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-ASIA.2016.7804765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

交通系统的工业化引发了严重的交通事故,导致成千上万的人死亡。为了解决这一问题,研究了基于视觉的自动驾驶车辆目标检测和高级驾驶员辅助系统。在本研究中,我们提供了基于深度神经网络的道路环境下的目标检测与定位实验。在KITTI数据集上比较了不同目标类别的检测精度,并分析了微调后的单镜头多盒检测器的识别结果。在原有检测模型的基础上,提高了6%左右的整体检测精度,特别是对行人和骑自行车者的检测精度提高了10%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On-road object detection using deep neural network
Industrialization of transportation system has derived serious accidents that resulted in thousands of deaths. To solve the problem, vision based object detection for autonomous vehicle and advanced driver assistance system has been researched. In this study, we provide experimentations of object detection and localization in on-road environment using deep neural network. We compared the detection accuracy among object classes and analyzed the recognition results with fine-tuned Single shot multibox detector on KITTI dataset. This work improves the performance of original detection model by increasing precision of overall detection about 6%, especially about 10% in pedestrian and cyclist.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信